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1. Introduction  

1.1 Background to this project 

The EU Water Framework Directive (WFD; 2000/60/EC) is delivered in six-year cycles, 

each cycle requiring a new River Basin Management Plan (RBMP) and programme of 

measures to be developed and implemented, with the status of every identified water 

body to be assessed and reported on. The primary means through which status is 

assessed is through the results of monitoring. Operational monitoring must be 

undertaken for all water bodies that have been identified as being at risk of failing the 

relevant environmental objectives under Article 4 of the WFD.  

Ireland has a total of 3192 WFD river water bodies (RWBs). It is not economically 

feasible, and nor is it expected that every RWB would be monitored for every quality 

element, and around 25% of RWBs are not monitored at all, or only for selected quality 

elements. In the absence of sampling data, the status of unmonitored RWBs must be 

“extrapolated” using an appropriate approach.  

For Cycle 1 reporting in 2008, the Environmental Protection Agency (EPA) used a 

statistical algorithm (k-means clustering) to group RWBs into 20 groups based on their 

typology, catchment pressures and risk assessments; unmonitored RWBs were then 

assigned a status from the closest nearby RWB that was found within the same cluster 

and within the same hydrometric area (Bradley & Wilkes, 2022). This is termed the 

“donor extrapolation” method. A similar approach, with additional validation using 

supplementary data, was used more recently to classify unmonitored RWBs for the 

2013-2018 reporting period. In the final assessment, 3,113 out of 3192 RWBs (98%) 

were assigned an ecological status. A total of 2,381 RWBs had their status defined 

using available monitoring data (EPA & NIEA) while 514 RWBs were defined using 

donor extrapolation. A further 218 RWBs were defined using expert judgement, with 

79 RWBs remaining unassigned (Bradley & Wilkes, 2022). 

The EPA has recently been considering alternative methods for applying WFD status 

to unmonitored water bodies. As part of this, APEM was commissioned by the EPA to 

assign a WFD status to unmonitored Irish lakes. That study (APEM, 2022a) 

successfully developed and applied a new regression-modelling approach, which 

provided new insights into the key factors determining the trophic status of lakes and 

was also able to quantify the degree of confidence in the status class predictions.  

This report builds on that study (APEM, 2022a) by developing and applying a series 

of statistical regression models to predict the ecological status of unmonitored RWBs. 

1.2 Water Framework Directive guidance  

It is recognised that it is not economically feasible to monitor all water bodies for all 

conditions. Therefore, the Directive allows the grouping of water bodies based on type 

(see Section 2.4 for details of the WFD typology) and on similar hydrological, 

geomorphological, geographical, or trophic conditions (European Commission, 

2003a). Intuitive (expert judgment) approaches or more sophisticated multivariate 
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classification procedures can be used for identifying groups of similar water bodies, 

although guidance from the Common Implementation Strategy (CIS) warns that ‘black 

box’ approaches should be used with caution, as there is no guarantee that the 

composition of the resulting groups will have a recognisable or obvious rationale 

(European Commission, 2003a). Whatever the method by which the water bodies are 

grouped, the guidance states that it is essential that sufficient representative water 

bodies are monitored within a group to provide an accurate assessment of status for 

that group. Where grouping is not possible, then the latest WFD Reporting Guidance 

indicates that “modelling” (including “statistical analysis”) or “expert judgement” can 

also be used to assign status (European Commission, 2022, p. 51).   

In this study, we adopt a regression modelling approach, which considers the effect of 

typology alongside other physical features and anthropogenic stressors to calibrate 

statistical models that are capable of predicting the status of unmonitored RWBs with 

a quantified level of accuracy and confidence. 

1.3 Study aim and objectives 

The aim of this study was to design and implement a methodology for assigning a 

WFD ecological status class to unmonitored Irish rivers.   

The specific objectives were to: 

• establish a conceptual framework for predicting status of unmonitored rivers; 

• set out a methodology and stepwise process to be used in assigning status; 

• apply the process to predict the status of unmonitored WFD rivers; 

• assess the accuracy of this approach in assigning status; and 

• provide recommendations for future improvements of the process. 

1.4 Scope 

This study focused on a population of 3192 RWBs. These cover the whole of the 

Republic of Ireland and include 26 RWBs which cross the border into Northern Ireland, 

plus three which are located entirely within Northern Ireland (Crilly Feeder, Fury River, 

Derryhooley Tributary). Data sources were incomplete for some cross-border RWBs, 

so results for these RWBs should be treated with caution.  

The study focused on predicting the WFD status class of the two quality elements that 

most commonly determine the overall ecological status of RWBs: Molybdate Reactive 

Phosphorus (MRP) and macroinvertebrates (Q-values). Nitrate is another important 

nutrient affecting the WFD status of surface water bodies1, but it was not included in 

this study because there is no Environmental Quality Standard (EQS) for nitrate in 

rivers, and because phosphorus rather than nitrogen is usually the limiting nutrient in 

 

 

1 The EPA considers a three year average of <0.9 mg/l as N to be indicative of High status and <1.8 

mg/l as N indicative of Good status. In 2019-2021, nitrate was monitored at 1557 sites in 667 RWBs, of 

which 892 sites were classed as Good or better. 
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freshwaters. The status class predictions for the two quality elements were combined 

using the one-out, all-out rule to predict an overall ecological status for RWBs that 

were unmonitored for MRP and/or macroinvertebrates. 

Of the 3192 RWBs assessed, 2281 are covered by the EPA’s national river monitoring 

programme. The study used monitoring data collected between 2019 and 2021 to 

calibrate statistical models, which were then used to predict the ecological status of 

unmonitored RWBs during this same three-year reporting period. This was the most 

recent period for which concurrent data was available on catchment characteristics, 

land-use and chemical/physical attributes. 

1.5 Report structure 

This report is structured to illustrate the process through which RWB status has been 

extrapolated and is laid out as follows: 

• Chapter 2: Conceptual framework, data sources and data processing. This 

chapter summarises the conceptual framework on which the analysis was 

based. It identifies the data sources used in the analysis (details of the steps 

taken to derive the data are provided in the Appendices). It includes a section 

on WFD typology, including the approach and analysis undertaken to calculate 

typology where this information was not available, and a description of the 

different RWB characteristics tested as potential predictors of status.  

• Chapter 3: Classification of RWBs based on anthropogenic stressors and 

physical features. This chapter outlines the methods used to model MRP 

concentration and status, and macroinvertebrate Q-value status. It presents the 

results of this approach, testing the predicted results against the monitored 

data, mapping the residuals and analysing confidence intervals for predictions. 

It provides an overall status for each unmonitored river (more detail is provided 

in the Appendices). It also includes the classification of river with high 

uncertainty. This chapter provides a framework to assist with expert judgement, 

where a predicted RWB status has a large margin of error associated with it. 

• Chapter 4: Discussion and Recommendations. This chapter discusses the 

different model performances, the strength of this approach, and the associated 

limitations. It provides recommendations for further research and for improving 

the monitoring programme.    

The report concludes with a series of appendices detailing methods and results. A full 

set of results is included as an Excel spreadsheet which forms an electronic appendix 

to this report.  
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2. Data sources and data processing 

2.1 Conceptual model 

To aid decisions about which variables to include when developing a predictive model 

of WFD status, a conceptual framework was built based on existing knowledge of the 

mechanisms of river eutrophication, and other anthropogenic pressures.  

In Ireland, the most commonly encountered forms of pollution in rivers are 

eutrophication and organic pollution. Less frequently encountered are non-organic 

types of pollution such as toxic pollution (e.g., by sheep treatment or industrial 

chemicals), siltation (e.g. arising from livestock access, over-grazing, drainage and 

erosion, or quarrying operations) and acidification in sensitive afforested areas. 

Additionally, hydromorphological alteration to river channels can have influential and 

adverse effects on aquatic organisms (Feeley et al, 2020; Trodd et al., 2022). Given 

these pressures, the key quality elements used by the EPA for assessing the status 

of Irish rivers are MRP concentration and the macroinvertebrate Q-value metric, which 

is based on the sensitivity of invertebrate taxa to reduced oxygen concentrations 

(Toner et al., 2005), used as a general indicator of biological quality in rivers (Trodd & 

O’Boyle, 2021) and known to be responsive to catchment urbanisation, agricultural 

intensity, and water quality (Donohue et al., 2006) 

The most recent Water Quality in Ireland report (Trodd et al., 2022) indicated that 50% 

of RWBs were at less than Good status, with declines in both number of High and 

Good status water bodies, and identified declines in overall quality. The quality 

element responsible for determining ecological status in the largest number of RWBs 

was macroinvertebrate Q-value, and overall physico-chemical status of rivers was 

influenced primarily by their nutrient status (Trodd et al., 2022). However, as a 

biological metric, the Q-value is not a determinant of quality in its own right, but an 

indicator of quality, in this case the processes affecting the chemical and physical 

condition of the river. It is important therefore to understand the key pressures and 

processes influencing the status of RWBs.  

The source / pathway / receptor model describes the variables driving the response of 

a receptor (such as a river and its ecological status) to a source of pollution, such as 

nutrient runoff from fertilised soil. The parameters of this approach are defined as 

follows: 

• Source: the origin of a potential effect (noting that one source may have several 

pathways and receptors) e.g., an activity such as application of fertiliser to 

pasture. 

• Pathway: the means by which the effect of the activity is linked to a receptor 

e.g., for the example above, runoff pathways that can result in excess fertiliser 

entering the river. 

• Receptor: the element of the receiving environment that is affected and the 

impact on it, e.g., for the above example, nutrient enrichment from fertiliser 
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leading to excessive algal or bacterial growth and deterioration of riverbed 

habitat in rivers. 

Different drivers influence the source of pollution and the pathways, influenced by 

hydrogeomorphological factors, through which the pollutant can be transported, 

attenuated or intercepted before delivery to the ultimate receptor, as well as the 

response of the receptor to this pollutant. The aim of the modelling conducted in this 

study is to use a knowledge of these processes to predict the overall ecological status 

of unmonitored RWBs.  

The Source Load Apportionment Model (SLAM) is a modelling framework developed 

by the EPA that predicts nutrient inputs from different sources within the catchment to 

receiving water bodies (Mockler et al., 2016, 2017). It uses an export coefficient 

approach to integrate catchment data such as land use, soil type, geology and 

hydrological connectivity with stressor information from point discharges and diffuse 

sources to characterise source-pathway-receptor relationships. SLAM also takes into 

account the effect of wastewater treatment processes in reducing phosphorus losses 

from effluent discharges. The output of the model is an estimate of the annual average 

nutrient load to each RWB. 

SLAM estimates load of total phosphorus (TP), which provides a direct predictor of 

nutrient enrichment and, as much nutrient input is associated with other forms of 

pollution such as organic inputs, can also provide somewhat of a proxy for these. 

Where it is important to distinguish largely nutrient inputs (e.g., inorganic fertiliser 

spraying, treated effluent discharge) from inputs associated with organic matter (e.g. 

sludge spreading, direct losses from farmyards) then levels of oxygen saturation and 

ammonia concentration, where measured, can be used to distinguish these.  

The SLAM model accounts only for TP, however for rivers the WFD environmental 

quality standard is based on biologically available MRP. TP will always be greater than 

MRP, and the phosphorus that is biologically available will be reduced over time, for 

example through its incorporation in particulate matter which removes phosphorus 

from the water. These processes are not explicitly modelled within the SLAM 

framework, but post-hoc adjustments can be made to account for phosphorus 

retention within larger rivers. For the purposes of this project, TP was used as a proxy 

for MRP, which allows a reasonable worst-case scenario to be modelled. 

Although SLAM is unable to calculate loads of biologically available MRP, it is able to 

calculate the relative contribution of various point sources (such as wastewater and 

industrial discharges) and diffuse sources (such as forestry, pasture, arable land, 

diffuse urban sources and septic tank systems), which typically have differing 

proportions of dissolved and particulate phosphorus. Partitioning the SLAM-modelled 

TP loads in this way therefore provides an indirect way of accounting for differing levels 

of bio-availability from different sources, and of gauging the relative contribution of 

different sources to measured in-river MRP concentrations. 
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The processes by which anthropogenic nutrient enrichment results in adverse effects 

on the biological communities of rivers are highly complex, with effects on the 

competitive balance between plant species, consequent effects on the fauna 

dependent on the plant community for food, shelter and reproduction, and the 

influence of biological feedback mechanisms and a range of environmental factors 

(some themselves anthropogenically influenced) on the manifestation of key 

eutrophication symptoms (Mainstone, 2010). Ecological communities are 

fundamentally shaped by the natural characteristics of the river, which are driven by 

factors such as catchment and site geology. Key factors are the nature of the flow 

regime (flashy, stable etc,), substrate types, alkalinity and pH, all of which are highly 

inter-related.  

In the absence of data for many of these variables, and in an attempt to simplify a 

complex set of interactions, the present study used river typology as a surrogate for 

ecological sensitivity to nutrient enrichment. In Ireland, the river water body typology 

is based on water hardness (using % calcareous geology as a proxy) and channel 

slope (Kelly-Quinn et al., 2005; see Section 2.4 for details). Although there is active 

scientific debate regarding the relative sensitivity of hard water and soft water rivers to 

elevated nutrient concentrations (Mainstone, 2010), water hardness has a 

fundamental influence on the composition of ecological communities in rivers, and is 

a proxy for geochemical processes that affect the mobilisation and transport of 

nutrients within the catchment. Channel slope influences in-stream hydraulic habitat 

(water depth, velocity) and substrate, which in turn influences the composition of the 

macroinvertebrate community (Kelly-Quinn et al., 2019) and opportunities for nutrient 

retention via uptake and sedimentation (Brett & Benjamin, 2008).  

As well as responding to changes in chemical water quality, macroinvertebrate 

communities are influenced by physical habitat quality, and adversely impacted by 

artificial modifications such channelisation, land drainage, barriers, culverts, 

embankments, overgrazing and bank erosion, which combine to reduce longitudinal 

and lateral connectivity, decrease habitat diversity and suitability, and lower ecological 

resilience to high and low flow events (e.g. Donohue et al., 2006; Dunbar et al., 2010). 

During 2016-2021 hydromorphology was assessed at 384 river sites using the River 

Hydromorphological Assessment Technique (RHAT). This is a supporting element for 

high-status sites and resulted in 146 RWBs being classed as Good rather than High 

status (Trodd et al., 2022). In the present study, the EPA’s Morphological Quality Index 

(MQI) was used to characterise the hydromorphological condition of RWBs. MQI is a 

desk-based technique that yields a suite of hydromorphological condition assessment 

scores (Quinlan and Mockler, 2020), which were then used as predictors of 

macroinvertebrate status. 

The contribution of the above factors to models of MRP concentration and 

macroinvertebrate status are illustrated in Figure 1. 
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Figure 1: Flow chart summarising the variables used to predict the ecological status of unmonitored RWBs  

For clarity the arrows only denote the factors retained in the final models.
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2.2 WFD monitoring programme 

2.2.1 Phosphorus  

Phosphorus in rivers is reported as a concentration of the phosphorus component of 

the biologically reactive form, MRP, based on a three-year mean. The EQS is <0.025 

mg/l P for High status and <0.035 mg/l P for Good status (Environmental Protection 

Agency, 2019; Table 1).  

 

Table 1: WFD Environmental quality standards for MRP 

MRP concentration (mg/l P) Status class 

<0.025 High 

<0.035 Good 

<0.05 Moderate 

<0.1 Poor 

≥0.1 Bad 

 

During 2019-21, MRP was monitored in 1317 RWBs (41% of the total). Based on 

results for the defining station in each RWB (i.e. the furthest downstream), 858 RWBs 

were classed as Good or better, with 646 achieving High status. (Figure 2; Table 2). 

The remaining 1875 (or 59%) of RWBs were unmonitored. 
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Figure 2: Map of water body-scale 2019-21 MRP status in monitored RWBs  

 

Table 2: Summary of 2019-21 MRP status, by RWB 

WFD status class No. of monitored RWBs 

High 646 

Good 212 

Moderate 189 

Poor 223 

Bad 47 

Total 1317 
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2.2.1 Macroinvertebrates  

Benthic macroinvertebrates are the main biological quality element used to assess the 

WFD status of rivers in Ireland. The Q-value system, described by Toner et al. (2005) 

and Feeley et al. (2020), is a qualitative assessment technique that combines 

information about the diversity and abundance of different macroinvertebrate 

taxonomic groups to yield a Quality (Q) value between 1 and 5. Other observational 

information (algae, macrophytes, sewage fungus, dissolved oxygen saturation and 

siltation) may also be used by the surveyor to increase the confidence in their 

assignment. These Q-values are then converted to EQRs and, in turn, to WFD status 

classes, as shown in Table 3. 

 

Table 3: Macroinvertebrate Q-values and associated EQRs and WFD status 

classes 

Q-value score EQR WFD status Pollution gradient 

Q4-5, Q5 ≥ 0.90 High Unpolluted 

Q4 0.80 – 0.89 Good Unpolluted 

Q3-4 0.70 – 0.79 Moderate Slightly polluted 

Q2-3, Q3 0.50 – 0.69 Poor Moderately polluted  

Q1, Q1-2, Q2 <0.50 Bad Seriously polluted 

  Adapted from Feeley et al., 2020 

 

During 2019-21, a total of 2896 sites in 2370 RWBs were classified for 

macroinvertebrates using the Q-values. Where two or more sites were monitored 

within a RWB, the poorest performing site determined the status class of the RWB. 

This may or may not be the defining station, the furthest downstream monitoring site 

in the RWB. As the present study utilises a range of other datasets that describe 

conditions at the water body outlet, it was decided to model macroinvertebrate status 

at the defining station within each monitored RWB. Using the defining station results 

only, 1394 RWBs were classed as Good or better, none were classed as Bad.  Over 

two-thirds of monitored water bodies fell into either the Good or Moderate status 

bands, indicating that many RWBs were close to the Good Ecological Status (GES) 

boundary (Figure 3; Table 4). The remaining 822 (or 26%) of RWBs were unmonitored. 
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Figure 3: Map of 2019-21 macroinvertebrate status at defining stations in 

monitored RWBs 

 

Table 4: Summary of 2019-21 macroinvertebrate status at defining stations, by 

RWB 

WFD Status class No. of monitored RWBs 

High 435 

Good 959 

Moderate 630 

Poor 346 

Bad 0 

Total 2370 
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Overall, 1317 RWBs were monitored for MRP and 2370 for macroinvertebrates and, 

of these, 1212 RWBs were “fully monitored” for both quality elements. 

 

2.3 River and catchment characteristics  

A variety of variables, listed in Table 5, were assembled to describe the characteristics 

of each RWB and its upstream catchment. Full details of how these variables were 

derived are provided in Appendix 1. 

 

Table 5: National-, catchment- and local-scale variables used to model MRP 

concentration and macroinvertebrate status 

Variable (units) Description and derivation Relevance References 

National Variables 

Easting, 

Northing  

River centroid location (projected in 

TM65 / Irish National Grid) 

Used to account for 

large-scale geographic 

variation among rivers.  

 

Catchment Variables – describe the characteristics of each RWB’s catchment 

Catchment The overall catchment of each RWB. 

There are 40 catchments defined, as 

the Shannon is split into several 

catchments. 

To account for 

catchment-scale 

differences. 

 

Catchment area 

(km2) 

The catchment area draining to the 

water body outlet. Derived from the 

2022 catchment products geodatabase 

provided by the EPA and using the 

nested catchments v2 layer. 

Larger catchments are 

likely to have more 

heterogenous land 

cover and land uses. 

Used to estimate flow 

in each water body. 

Foy et al. 

(2003); 

Nõges 

(2009) 

Runoff 

(m3/km2/yr) 

Annual mean naturalised runoff across 

the upstream catchment, estimated for 

2802 RWBs using the QUBE model 

and predicted using a statistical model 

for the remaining 390 RWBs. 

Influences the 

mobilisation and 

transport of nutrients. 

Bree (2018) 

Flow (m3/yr) The annual mean discharge at the 

RWB outlet, calculated by multiplying 

the modelled annual runoff by the 

RWB’s catchment area. 

A proxy for river size. 

Influences dilution of 

phosphorus loads and 

time available for 

nutrient 

update/retention. 
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Variable (units) Description and derivation Relevance References 

Soil type (%) The percentage of peaty, well-drained, 

poorly drained and very poorly drained 

subsoils within the catchment.  

Influences run-off, land 

use, mobilisation and 

transport of nutrients, 

and susceptibility to 

acidification impacts. 

Hem (1985); 

Meybeck et 

al. (1996) 

 

Upstream 

urban/rural total 

phosphorus 

loading (mg/l) 

SLAM v303 provided an estimate of 

the annual load (kg/yr) of total 

phosphorus (TP) from land within each 

RWB. TP is worst-case estimate of 

MRP loading to the RWB.  

 

These loads were aggregated across 

each RWB’s upstream catchment (i.e., 

excluding loads from the focal RWB 

itself). Headwater RWBs have no 

water bodies upstream and so have a 

loading of 0. 

 

SLAM allows TP from different sources 

to be estimated. The TP load was 

therefore split into “urban” sources 

from homes and businesses 

(wastewater, diffuse urban, septic 

tanks and other licensed discharges) 

and “rural” land-based sources 

(pasture, arable, forestry, peatlands 

and atmospheric deposition on water).  

 

The annual TP load (kg/yr, converted 

to mg/yr) was then divided by the 

annual flow (m3/yr, converted to l/yr) at 

the RWB outlet to estimate the annual 

mean flow-weighted TP concentration 

in each RWB (mg/l) due to “upstream” 

sources. 

Estimate of external 

nutrient pressure from 

the catchment area 

upstream of each 

RWB. 

Mockler et 

al. (2017) 

Total nitrogen 

loading (mg/l) 

SLAM v303 provided an estimate of 

the annual load (kg/yr) of total nitrogen 

(TN) from all sources for each RWB 

catchment. This load was then divided 

by the annual flow (m3/yr, converted to 

l/yr) at the RWB outlet to estimate the 

annual mean flow-weighted TN 

concentration in each RWB (mg/l). 

Estimate of external 

nutrient pressure on 

each RWB. 

Mockler et 

al. (2017) 
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Variable (units) Description and derivation Relevance References 

Upstream MRP The measured MRP concentration in 

the RWB immediately upstream of the 

focal RWB. Where an RWB had more 

than one upstream RWB, the 

measurement for the largest RWB was 

used. 

Estimate of MRP 

flowing into an RWB 

from upstream 

sources. 
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Variable (units) Description and derivation Relevance References 

Local variables – describe the characteristics of each RWB 

Hardness Percentage calcareous geology in 

bedrock, derived from 2017 GIS data. 

Also available categorised (low, 

medium and high hardness) for RWB 

typology. 

An indicator of 

catchment geology 

and therefore water 

chemistry. 

Kelly-Quinn 

et al. (2005) 

Mean channel 

slope (m/m) 

The average slope of the river. Derived 

from 2017 GIS data. Also available 

categorised (low, medium, high and 

very high slope) for RWB typology. 

Catchment slope may 

influence the 

hydrology within the 

catchment, including 

run-off potential and 

the importance of 

surface water 

pathways.  

Greene et 

al. (2013) 

Kelly-Quinn 

et al. (2005) 

Local 

urban/rural total 

phosphorus 

loading (mg/l) 

 

 

SLAM v303 provided an estimate of 

the annual load (kg/yr) of total 

phosphorus (TP) from land within each 

RWB (i.e., excluding the upstream 

catchment). TP is worst-case estimate 

of MRP loading to the RWB.  

 

SLAM allows TP from different sources 

to be estimated. The TP load was 

therefore split into “urban” 

(wastewater, diffuse urban, septic 

tanks and other licensed discharges) 

and “rural” (pasture, arable, forestry, 

peatlands and atmospheric deposition 

on water) sources.  

 

The annual TP load (kg/yr, converted 

to mg/yr) was then divided by the 

annual flow (m3/yr, converted to l/yr) at 

the RWB outlet to estimate the annual 

mean flow-weighted TP concentration 

in each RWB (mg/l) due to “local” 

sources. 

Estimate of external 

nutrient pressure 

within each RWB. 

Mockler et 

al. (2017) 

Dissolved 

oxygen 

saturation (%)  

The average percentage saturation of 

dissolved oxygen in the RWB, 

averaged over a 3 year period (2019-

21). Measured for 1393 RWBs and 

predicted using a statistical model for 

the remaining 1799 RWBs (see 

Appendix 1 for details). 

Potential water quality 

stressor on 

macroinvertebrate 

communities. 
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Variable (units) Description and derivation Relevance References 

Ammonium 

concentration 

(mg/l N) 

The annual mean ammonium 

concentration in the river water, 

averaged over a 3 year period (2019-

21). Measured for 1320 RWBs and 

predicted using a statistical model for 

the remaining 1872 RWBs (see 

Appendix 1 for details). 

Potential water quality 

stressor on 

macroinvertebrate 

communities. 

 

Abstraction 

pressure 

A flag indicating whether or not 

abstraction is having a significant 

influence on flows in the RWB. 

Potential flow stressor 

on macroinvertebrate 

communities. 

 

Morphological 

Quality Index 

(MQI) 

An indication of habitat quality as a 

result of anthropogenic alterations to 

the form of an RWB. Measured on a 

scale from 0-1, with one indicating high 

habitat quality. 

Potential habitat 

stressor on 

macroinvertebrate 

communities. 

Rinaldi et al. 

(2013) 

Length of the 

RWB assessed 

as good for MQI 

The percentage of the overall length of 

the RWB which was assessed as 

being at least of Good quality for MQI 

Potential habitat 

stressor on 

macroinvertebrate 

communities. 

 

Hydro-

morphological 

pressure 

A flag indicating the presence (1) or 

absence (0) of different 

hydromorphological pressures: 

channelisation, land drainage, barriers, 

culverts, embankments, overgrazing 

and bank erosion. 

Potential habitat 

stressor on 

macroinvertebrate 

communities. 

 

MQI Indicators MQI sub-scores assessing the impact 

of different hydromorphological 

pressures on the overall habitat 

quality. The indicators used were: 

F1: Longitudinal continuity in sediment 

and wood flux; 

F3: River corridor connectivity; 

F5: Presence of a potentially erodible 

corridor; 

F7: Planform pattern and cross-section 

variability; 

A13: Historic modification (within 

cut/reclaimed peat). 

Potential habitat 

stressor on 

macroinvertebrate 

communities. 

Quinlan and 

Mockler 

(2020) 

Soil type (%) The percentage of poorly drained 

subsoils within the RWB.  

Influences run-off, land 

use, mobilisation and 

transport of nutrients, 

and susceptibility to 

acidification impacts. 

Hem (1985); 

Meybeck et 

al. (1996) 
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Variable (units) Description and derivation Relevance References 

Urban land use 

(%) 

Percentage of land within the focal 

RWB which has been urbanised 

Indicator of potential 

stressors on 

macroinvertebrate 

communities. 

 

Heavily modified 

water body 

A flag indicating whether the RWB is 

considered to be heavily modified. The 

reasons for this flag being assigned 

include navigation, flood protection, 

arterial drainage and water storage. 

Indicator of potential 

flow and/or habitat 

stressors on 

macroinvertebrate 

communities. 

 

 

2.4 WFD Typology 

The WFD requires that surface water bodies be differentiated according to type, so 

that any differences in biological indicator communities are able to detect differences 

in pressure, rather than reflecting natural variation (European Commission, 2003a). 

Natural variation in biological communities occurs along hydrogeomorphological 

gradients, and thus water body types must characterise elements of the water body’s 

natural hydrogeomorphology at reference condition to reflect this natural variation 

(European Commission, 2003b).  

The WFD typology of rivers in Ireland is based on Kelly-Quinn et al. (2005), who 

showed that river hardness and mean channel slope were the most important factors 

explaining natural variation in river biological communities (Table 6). Hardness is 

grouped into categories, labelled from 1 to 3 based on increasing calcareous geology 

in the catchment. Slope is similarly divided into categories labelled from 1 to 4 based 

on increasing gradient. Each RWB is assigned a two-digit typology category, with the 

first digit relating to the hardness category and the second to slope category. 

 

Table 6 Typology of Irish river water bodies, based on hardness and channel 

slope  

Hardness (% calc. geology) Slope (m/m) 

Codes  1 2 3 4 

 Code values <0.005 0.005-0.02 0.02-0.04 >0.04 

1 0% 11 12 13 14 

2 1-25% 21 22 23 24 

3 >25% 31 32 33 34 

 

For this project, it was important to know the typology of every RWB so that any 

influences of hardness and slope could be taken into account when predicting WFD 

status. Typology information was provided by the EPA for all except the 26 cross-
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border RWBs where the slope and water hardness categories were instead derived 

from modelled estimates of slope and % calcareous geology (See Appendix 1). 

Using a combination of measured and predicted data, each of the 3192 RWBs was 

assigned to a typology category (Figure 4). Hard water rivers with gentle slopes (types 

31 and 32) are the most numerous, accounting for ~43% of all RWBs.  

 

 
Figure 4: Number of RWBs, by river typology category and presence/absence 

of monitoring 

 

Figure 5 shows the geographic distribution of the river types. There is a clear 

geographic pattern in the distribution of the different river categories, with gently 

sloping, hardwater rivers dominating in the centre of Ireland, and soft water rivers 

mainly present in the more mountainous areas in the west and south-east. 
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Figure 5: WFD typology map of all 3192 river water bodies 
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3. Methodology and results 

3.1 Approach 

This section describes the approach used to develop statistical models of MRP 

concentration and macroinvertebrate status, and then apply those models to predict 

the status of unmonitored river water bodies. The approach is very similar to the one 

used by APEM to predict the WFD status of unmonitored lakes (APEM, 2022a). 

For both quality elements, spatial variation among monitored RWBs was analysed 

using Generalised Additive Models (GAMs). GAMs are an extension of standard linear 

regression models that allow relationships between the explanatory variables and the 

response to be described by smooth curves (Wood, 2017). By flexibly describing non-

linear relationships non-parametrically, without making a priori assumptions about the 

form of the relationship, GAMs offer a middle ground between simple linear models 

and complex machine-learning techniques, which has led to them being widely used 

to model complex ecological systems (Pedersen et al., 2019). 

A standard gaussian error distribution was used to model MRP concentration. By 

contrast, the macroinvertebrate model focused on predicting Q-value status classes, 

which have a natural order (High, Good, Moderate, Poor and Bad), and so an ordered 

categorical (ocat) model was used instead (see Section 3.3.1 for further details).  

For each model, the conceptual model was used to guide the selection of candidate 

predictor variables that had a plausible, scientific basis for inclusion in the model. 

Candidate variables were screened to identify and eliminate any that were strongly 

correlated or had high concurvity (where one variable was a smooth function of 

another). Continuous predictors were modelled as smooth functions using thin plate 

regression splines, with the degree of smoothing optimised using restricted maximum 

likelihood (REML; Wood, 2011). Two-dimensional isotropic smooths were used to 

model geographic variation (i.e., easting/northings), and a tensor product smooth was 

used to model interactions between variables measured on different scales. 

A full model containing all candidate predictor variables was simplified using backward 

model selection to yield a final, parsimonious model containing only the most useful 

predictor variables. Model selection was based on the Bayesian Information Criterion 

(BIC) rather than the Akaike Information Criterion (AIC) because it penalises model 

terms more heavily and because simpler models tend to be more transferable and 

give better predictions when applied to new locations outside the training set (Millidine 

et al., 2016; Jackson et al., 2017). The model with the lowest BIC was selected as the 

final model. The accuracy of the final models was quantified by comparing the 

predicted and measured status classes for the monitored rivers in the calibration 

dataset. 

The final models were used to predict MRP and macroinvertebrate status for the 

unmonitored RWBs and, in turn, to assess whether or not each RWB was achieving 

GES. The degree of confidence in the classification results was quantified using 
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prediction intervals (for MRP) or prediction probabilities (for macroinvertebrates) and 

summarised in the form of certainty bands. 

Finally, the status class predictions for the two quality elements were combined using 

the one-out, all-out rule to predict the overall status of each unmonitored RWB. 

All analyses were performed in R 4.2.1 (R Core Team, 2022), and the GAM models 

were fitted using the gam function from the mgcv package (Wood, 2022).  

 

3.2 Phosphate status 

3.2.1 Model fitting  

A total of 1317 RWBs were monitored for MRP. The three-year (2019-21) mean MRP 

concentration (mg/l) was modelled as a function of the following predictor variables 

(see Table 5 for details): 

• The TP loading to each water body was broken down into four separate 

variables in order to understand the relative importance of urban vs rural 

sources from the local vs upstream catchment. The four variables were 

expressed as concentrations (mg/l) and log10-transformed. 

• To account for spatial differences in phosphorus mobilisation and transport, a 

2D smooth was included to represent a possible interaction between local rural 

TP loading and the local percentage of poorly draining soils (and, 

alternatively, the local percentage of very poorly draining soils).  

• Larger watercourses typically have longer residence times, with greater 

opportunity for MRP to be lost from the water column via sedimentation and 

biological uptake. Annual mean naturalised flow was therefore used as an 

indicator of river size and proxy for residence time and included as an 

interaction with each of the four phosphorus loading variables.  

• Typology was included as a main effect to account for possible differences in 

nutrient dynamics and MRP concentrations among river types. As an alternative 

to typology, slope (m/m) and hardness (% calcareous geology) were included 

as main effects to account for possible differences among river types. 

• To account for hydrological connectivity and upstream water quality, the 

measured mean (2019-21) MRP concentration in immediately upstream 

water bodies was included as a predictor, where available. (A dummy variable 

was used for headwaters and other water bodies with no upstream MRP 

monitoring data). 

• The presence/absence of abstraction pressure was included as a main effect 

to account for the possible effect of water abstraction on dilution capacity. 

• To account for other sources of spatial variation, easting and northing were 

included as a 2D smooth and, alternatively, catchment was included as a 

factor.  
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MRP concentration was log10-transformed to satisfy the model’s assumption of 

normally distributed errors and heterogenous variation (see Appendix 2 for residuals 

plots), and heavily skewed predictor variables were log10-transformed to reduce the 

influence of outliers. Backward model selection using a BIC was used to retain only 

the most relevant predictor variables.  

3.2.2 Final model  

The variables retained in the final model were: 

• local urban phosphorus loading; 

• upstream urban phosphorus loading; 

• local rural phosphorus loading x local percentage of poorly draining soils; 

• flow;  

• slope; and 

• easting and northing. 

Figure 6 shows the independent partial effect of each variable on MRP concentration. 

Urban phosphorus loading had a strong positive association with MRP 

concentration, with “local” loading from the immediate RWB having a stronger effect 

than “upstream” loading from the upstream catchment. This is not surprising given that 

loads from the upstream catchment may be attenuated by nutrient retention before 

reaching the focal RWB.  

Overall, “urban” emissions from homes and businesses had a stronger influence on 

MRP concentration than “rural” land-based sources, possibly because wastewater and 

septic tank discharges typically contain a higher proportion of dissolved phosphorus 

than run-off from agricultural and forestry land. 

“Local” rural loading had a strong positive association with MRP concentration, but 

this effect was moderated by soil type (Figure 7). The four curves in Figure 7 illustrate 

the modelled relationship for RWBs with differing proportions of poorly draining 

soils, ranging from 1% to 99%. In RWBs with well-draining soils, the SLAM-modelled 

phosphorus loads had little influence on in-river MRP concentration, but as the 

proportion of poorly drained soils increased, MRP concentration become increasingly 

sensitive to phosphorus loading from local rural sources. This result concurs with 

previous EPA assessments, which found the highest phosphorus concentrations in 

areas that have a high proportion of poorly draining soils such as Limerick, Monaghan, 

the area north west of Dublin and Wexford (EPA 2021b). 

Phosphorus loading from upstream rural sources was not significantly associated 

with MRP concentration and so was dropped from the final model. Again, this is likely 

because loads from the upstream catchment are attenuated by nutrient retention 

before reaching the focal RWB. Also, the rate of attenuation may be even stronger for 

land-based rural sources than for urban sources from homes and businesses, 

because the former typically have a higher proportion of particulate phosphorus, which 

is less biologically available and more readily deposited. 
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After accounting for the influence of nutrient pressures, there was a very strong 

negative association between MRP concentration and river flow (Figure 6). River flow 

is an indicator size and proxy for residence time. Although none of the river flow x 

phosphorus loading interactions were retained in the final model (possibly due to low 

statistical power), this strong main effect is consistent with the idea that larger 

watercourses have longer residence times and function similarly to lakes, with greater 

opportunity for MRP to be lost from the water column via sedimentation and biological 

uptake.  

Channel slope was also retained in the final model, even though it had a relatively 

weak negative association with MRP concentration (Figure 6). The cause of this 

relationship is unclear; steeper land might be expected to have less intensive land use 

and lower phosphorus losses, but this kind of geographic variation is accounted for in 

the SLAM model, and hence in the phosphorus loading variables. The other typology 

variable – hardness – was not significantly associated with MRP concentration and 

so was not retained in the final model; again this may be because hardness is 

correlated with land use intensity and phosphorus losses, which are already accounted 

for by the SLAM model. 

Easting/northing proved to be a better predictor of MRP concentration than 

hydrological catchment because it is better able to describe continuous changes in 

nutrient loading and water quality across the country. Figure 8 illustrates the regional 

variation in measured MRP concentration after accounting for the effect of other 

predictors. All else being equal, RWBs in Tipperary, Limerick and Kilkenny had higher 

in-river MRP concentrations than those in the western coastal counties of Mayo and 

Sligo, central counties such as Offaly, and also County Wicklow. This regional 

variation could reflect spatial differences in soil geochemistry and/or historically high 

phosphorus inputs to RWBs in more intensively farmed regions of the country and/or 

under-estimation by the SLAM model of phosphorus loads from some agricultural 

sources. Regardless of the cause, the final model accounts for this unexplained 

regional variation in its predictions of MRP concentration for each RWB. 
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Figure 6: Partial effects plots showing the modelled relationship between each 

predictor variable and log10 MRP concentration when other variables are held 

constant at their mean values  

Grey shading shows 95% confidence intervals 
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Figure 7: Partial effects plot showing the modelled relationship between local 

rural phosphorus loading, local percentage poorly draining soils and in-river 

MRP concentration, when all other variables are held constant at their mean 

values  

Coloured shading shows 95% confidence intervals 
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Figure 8: Partial effects plot showing the modelled effect of easting/northing 

on log10 MRP concentration  

– i.e. the regional variation in MRP that is not explained by the other variables 

in the model   

 

Abstraction pressure and upstream MRP concentration were not retained in the final 

model. Abstraction pressure is a relatively crude indicator of possible abstraction 

effects on dilution capacity, and this pressure does not appear to be very widespread 

(only 10.1% of RWBs were flagged as being at risk from abstraction pressure). 

Similarly, data on upstream MRP concentration was only available for 24.4% of 

RWBs because not all RWBs were monitored and some are headwaters that, by 

definition, do not have any upstream RWBs. Furthermore, upstream MRP 

concentration is correlated with phosphorus loading, so the water quality influence 

from upstream RWBs is also captured via that variable. 

3.2.3 Model performance  

Overall, the model explained 68.3% of the variation in MRP concentration (Figure 9). 
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Figure 9: Predicted vs measured MRP concentration for monitored RWBs 

 

The predictive performance of the model was assessed by converting the predicted 

concentrations to WFD status classes (using the EQSs in Table 1) and comparing the 

predicted and measured status classes of the 1317 monitored RWBs (Figure 10). 

Overall, the model predicted the correct status class with 59.8% accuracy and 

predicted with 80.1% accuracy whether or not a RWB was achieving Good status. 

There was a slight tendency to over-predict status more than under-predict, but in only 

12.4% of cases was the model prediction out by more than one status class.  
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Figure 10: Matrix of measured and predicted MRP status class for the 1317 

monitored RWBs 

 

3.2.4 Model predictions  

The final model was used to predict MRP concentration for the 1875 unmonitored 

RWBs. Of these, 77.6% of these were predicted to be achieving Good status for MRP, 

compared with 65.15% of monitored RWBs (Figure 11), which suggests that the EPA’s 

monitoring programme disproportionately samples RWBs that are at risk of not 

achieving Good status.  

Across the 12 typology categories, RWBs with steep slopes (types X3 and X4) had 

the highest proportion achieving at least Good status, and more gently sloping RWBs 

had the lowest proportion achieving Good status (Figure 12). 

Figure 13 maps measured and predicted MRP status for all 3192 RWBs, revealing 

strong geographic variation in MRP status which broadly reflects regional variation in 

the intensity of land use and level of phosphorus loading from point and diffuse 

sources, and the hydrology of the soils. 
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Figure 11: Summary of MRP status for monitored (measured) and unmonitored 

(predicted) RWBs 

 

 

Figure 12: Summary of MRP status for all RWBs, by WFD typology   
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Figure 13: Map of measured and predicted MRP status for all RWBs 
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3.3 Macroinvertebrate status 

3.3.1 Model fitting  

Macroinvertebrates were monitored in 2370 RWBs. Q-values are non-continuous (i.e. 

they take only certain, discrete values between 1 and 5; see Table 3), meaning that a 

standard GAM with a gaussian error distribution is inappropriate for modelling Q-

values (or their corresponding EQRs). Instead, an ordered categorical (‘ocat’) model 

was used to directly predict the probability of a RWB being in each of four WFD status 

classes (High, Good, Moderate and Poor – no monitored RWBs were at Bad status in 

2019-21).  

Using Q-value status class as an ordered categorical response variable, the ocat 

model calculates a continuous latent variable, which takes values from +∞ to -∞ and 

represents a gradient in macroinvertebrate status. Following a logistic distribution, the 

probability of this latent variable lying between certain cut-points provides the 

probability that the status class is High, Good, Moderate or Poor (Table 7). The cut-

points are estimated alongside the model smoothing parameters using the same 

criterion. In the following sections, it is this latent variable which is displayed as the 

response variable, rather than actual Q-values themselves. 

 

Table 7: Cut-points used to split the ocat model’s latent variable into WFD 

status classes 

Q-value score WFD status Latent variable 

Q4-5, Q5 High > 3.49 

Q4 Good 0.94 to 3.49 

Q3-4 Moderate -1.00 to 0.94 

Q2-3, Q3 Poor < -1.00 

Q1, Q1-2, Q2 Bad NA 

  

Q-value status class was modelled as a function of the following predictor variables 

(see Table 5 Table 5: National-, catchment- and local-scale variables used for details): 

• Water quality pressures were represented using three separate variables 

describing three-year (2019-21) mean concentrations: (i) MRP concentration 

(log10 transformed), either measured or predicted by the MRP model described 

in Section 3.2.1 above; dissolved oxygen saturation, either measured or 

predicted using a simple interpolation model (see Appendix 1); and (iii) 

ammonium concentration, either measured or predicted using a simple 

regression model (see Appendix 1).  

• Morphological pressures were represented using a number of alternative 

variables (see Table 5 for details): (i) the MQI score at the defining station; (ii) 

the percentage of the length of the RWB which was assessed as at least 
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Good status for MQI; (iii) a suite of five MQI indicator sub-scores; (iv) a suite 

of seven hydromorphological pressure indicator variables; and (v) whether 

or not the RWB is designated as Heavily Modified. 

• The presence/absence of abstraction pressure was included as a main effect 

to account for the possible effect of flow alteration. 

• Typology was included as a main effect to account for possible differences in 

nutrient dynamics and macroinvertebrate community composition among river 

types. As an alternative to typology, slope (m/m) and hardness (% calcareous 

geology) were included as main effects to account for possible differences 

among river types. 

• To account for hydrological connectivity and upstream water quality, the 

measured macroinvertebrate status in immediately upstream water bodies 

was included as a predictor, where available. (A dummy variable was used for 

headwaters and other water bodies with no upstream monitoring data). 

• Annual mean naturalised flow was used as an indicator of river size. 

• The influence of soil type and land use within the RWB catchment were 

represented using the % of poorly draining soils and % urban land use, 

respectively. 

• To account for other sources of spatial variation, easting and northing were 

included as a 2D smooth and, alternatively, catchment was included as a 

factor.  

Backward model selection using BIC was again used to retain only the most relevant 

predictor variables.  

3.3.2 Final model  

The variables retained in the final model were: 

• MRP concentration; 

• dissolved oxygen saturation; 

• flow; 

• slope; 

• local % poorly draining soils; 

• local % urban land use; 

• Heavily Modified Water Body;  

• MQI score; and 

• easting and northing. 

Figure 14 shows the independent (partial) effect of each variable on macroinvertebrate 

status when other variables are held constant at their mean values. Specifically, the 

vertical axis shows the expected value of the ocat model’s latent variable, which 

represents a gradient in macroinvertebrate status, rather than Q-values themselves. 

These charts show a strong negative effect of increasing MRP concentration and a 

strong positive effect of dissolved oxygen saturation. Although ammonium 
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concentration was not retained in the final model, it is strongly correlated with MRP 

concentration and therefore indirectly captured through this variable. Together, these 

variables indicate that water quality is the single most important pressure influencing 

macroinvertebrate status. However, it is not currently possible to rank the relative 

influence of MRP, dissolved oxygen and ammonium due to the correlations between 

them. 

Of the various alternative measures of morphological pressure, two were retained in 

the final model. All else being equal, Heavily Modified Water Bodies had lower 

macroinvertebrate status than other RWBs, and MQI score (indicating better quality 

habitat) had a weak positive effect on macroinvertebrate status (Figure 14). 

Interestingly, the overall MQI score, which is a simple aggregate of various sub-scores, 

was a better predictor of macroinvertebrate status than individual variables that scored 

specific kinds of morphological alteration. This suggests either that the methods used 

to record different types of morphological alteration may be too crude to be useful 

predictors in their own right or, more likely, that channelisation, land drainage, barriers, 

culverts, embankments etc., interact in complex ways to produce ecological responses 

that vary from river to river and site to site, and which cannot easily be deconstructed 

into simple additive effects. On top of these effects, % urban land use had a strong, 

but uncertain negative effect on macroinvertebrate status, with impacts appearing to 

be greatest when urban land use in the RWB was >50%. 

Macroinvertebrate status increased with channel slope (Figure 14). The cause of this 

relationship is unclear; steeper land might be expected to have less intensive land use, 

less pollution and more natural channel morphology, but this kind of geographic 

variation should be accounted for by other variables in the model. The other typology 

variable – hardness – was not significantly associated with macroinvertebrate status 

and so was not retained in the final model. 

After accounting for other influences, there were weak positive effects of river flow 

and % poorly drained soils on macroinvertebrate status, the mechanisms for which 

are unclear (Figure 14). Abstraction pressure was not retained in the final model; 

this was unsurprising given that this variable provides a relatively crude indicator of 

possible abstraction effects, and this pressure does not appear to be very widespread 

(only 10.1% of monitored RWBs were flagged as suffering from abstraction pressure).  

Easting/northing proved to be a better predictor of macroinvertebrate status than 

hydrological catchment because it is better able to describe continuous changes in 

anthropogenic pressures, landscape characteristics and ecological communities 

across the country. Figure 15 illustrates the regional variation in macroinvertebrate 

status that cannot be explained by the other variables in the model. All else being 

equal, (i.e. after accounting for geographic variation in water quality and other 

pressures) macroinvertebrate status was higher in RWBs around Cavan/Monaghan, 

central Connaught, eastern Cork and Wicklow/Wexford, and lower in RWBs around 

the west coast, particularly in Donegal. This regional variation may reflect natural 

differences in the sensitivity of different macroinvertebrate communities to water 
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quality and other pressures, and/or the influence of other pressures missing from, or 

not fully accounted for in the model. Together, these land use and landscape 

characteristics give rise to different water quality and ecological responses in each 

region. Regardless of the underlying cause, the final model accounts for this 

unexplained regional variation in its predictions of macroinvertebrate status for each 

RWB. 

 

 

Figure 14: Partial effects plots showing the modelled relationship between 

each predictor variable and macroinvertebrate status (as represented by a 

continuous latent variable or 'linear predictor’) when other variables are held 

constant at their mean values  
Grey shading shows 95% confidence intervals 
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Figure 15: Partial effects plot showing the modelled effect of easting/northing 

on macroinvertebrate status 

 – i.e. the regional variation in macroinvertebrate status (as represented by a 

continuous latent variable) that is not explained by the other variables in the 

model   
 

3.3.3 Model performance 

Overall, the model explained 21.9% of the variation in the calibration dataset. Although 

this is much lower than the 68.3% of variation explained by the MRP model, the two 

figures are not directly comparable because the MRP model assumes a Gaussian 

error distribution, whereas the macroinvertebrate model uses a logistic error 

distribution. 

A better, and more comparable, measure of predictive performance is gained by 

comparing the measured status class of the 2370 monitored RWBs with the class 

predicted by the final model (Figure 16). Overall, the model predicted the correct 

macroinvertebrate status class with 49.9% accuracy. This performance is slightly 
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lower than that achieved by the MRP model, despite there only being four 

macroinvertebrate status classes (no monitored RWBs were at Bad status); we 

speculate that this may be because macroinvertebrates respond in more complex 

ways to a wider range of pressures than MRP concentration, which makes status 

harder to predict. 

The macroinvertebrate model predicted with 75.1% accuracy whether or not an RWB 

was achieving Good status, which again was worse than for the MRP model. This may 

in part be because a high proportion (67.1%) of monitored RWBs were at Good or 

Moderate status for macroinvertebrates, and these “borderline” cases are inherently 

more difficult to classify as “Good” and “Not Good” than RWBs at High or Poor status.  

Overall, there was a slight tendency to over-predict status more than under-predict, 

but in only 5.1% of cases was the model prediction out by more than one status class. 

This is actually better than the 12.4% achieved by the MRP model, probably due to 

the lack of a fifth status class. 

 

 

Figure 16: Matrix of measured and predicted macroinvertebrate status class 

for the 2370 monitored RWBs 

 

3.3.4 Model predictions  

The final model was used to predict macroinvertebrate Q-value status for the 822 

unmonitored RWBs. The macroinvertebrate model was based on data from the 

monitoring station furthest downstream within the RWB (the defining station), rather 
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than the poorest performing site within the RWB, which is the one used to determine 

status for WFD reporting. Consequently, the figures presented below do not 

necessarily match the official WFD status classification reported by the EPA. 

Overall, 61.8% of unmonitored RWBs were predicted to be achieving Good status for 

macroinvertebrates, compared with 50.1% of monitored RWBs (Figure 17), which 

suggests that the EPA’s monitoring programme disproportionately samples RWBs that 

are at risk of not achieving Good status.  

Across the 12 typology categories, RWBs with steep slopes (types X3 and X4) had 

the highest proportion achieving at least Good status, and more gently sloping RWBs 

had the lowest proportion at Good status (Figure 18). 

Figure 19 maps measured and predicted macroinvertebrate status for all 3192 RWBs, 

revealing strong geographic variation in macroinvertebrate status which broadly 

reflects regional variation in the intensity of land use, landscape characteristics and 

level of TP loading from point and diffuse sources. 

 

 

Figure 17: Summary of macroinvertebrate status for monitored (measured) and 

unmonitored (predicted) RWBs 
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Figure 18: Summary of macroinvertebrate status for all RWBs, by WFD 

typology   
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Figure 19: Map of measured and predicted macroinvertebrate status for all 

3192 RWBs 

3.4 Overall status 

The measured and predicted status classes for the two quality elements (MRP and 

macroinvertebrates) were combined using the one-out all-out rule to predict an “overall 

status” for every RWB. Although MRP is not ordinarily allowed to stand on its own in 

formal one-out all-out status assessments, given the strong influence of MRP 

concentration on macroinvertebrate status, combining the two sets of results in this 

way provides an integrated assessment of the influence of phosphorus enrichment on 

the ecological status of RWBs. Using the 1212 RWBs that were “fully monitored” for 

both MRP and macroinvertebrates, it is then possible to assess the ability of the two 
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models to predict a RWB’s overall status class. As shown in Figure 20, the models 

predicted the correct overall WFD status class with 49.8% accuracy and predicted with 

76.2% accuracy whether or not a RWB was achieving at least Good status. 

 

 

Figure 20: Matrix of measured and predicted overall status class for the 1212 

RWBs monitored for both MRP and macroinvertebrates 

 

Around 59.0% of the 1980 “unmonitored” RWBs (i.e. RWBs lacking measured data for 

one or both quality elements) were predicted to be achieving Good overall status, 

compared with 40.4% of 1212 “fully monitored” RWBs (Figure 21). Across the 12 

typology categories, steeply sloping RWBs (types X3 and X4) had the highest 

proportion achieving at least Good status, whereas more gently sloping RWBs had the 

lowest proportion (Figure 22). This is in line with the results of the individual quality 

elements. Figure 23 maps the measured and predicted overall status for all 3192 

RWBs. Overall status shows marked geographic variation reflecting, predominantly, 

the intensity of land use, the landscape characteristics and level of phosphorus 

loading. 
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Figure 21: Summary of overall status for monitored and unmonitored RWBs 

 

Figure 22: Summary of overall status for all 3192 RWBs, by WFD typology   
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Figure 23: Map of overall status for all 3192 RWBs 

 

The quality element(s) driving the overall (worst) status of monitored and unmonitored 

RWBs are tabulated in Table 8 and mapped in Figure 24. For both monitored and 

unmonitored RWBs, macroinvertebrates were the most common driving elements. 

MRP was a more common driving element for RWBs across south-central Ireland, the 

south east and around Monaghan/Cavan. 
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Table 8: Worst element(s) driving overall status 

Worst element(s) driving overall 
status 

Monitored 
RWBs 

Unmonitored 
RWBs 

All RWBs 

MRP 183 223 406 

Macroinvertebrate 643 1216 1859 

Both 386 541 927 

Total 1212 1980 3192 

 

 

Figure 24: Worst element(s) driving overall status for all 3192 RWBs 
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3.5 Uncertainty in status classifications 

One of the advantages of GAMs over classification techniques such as k-nearest 

neighbours and classification trees is that the MRP model yields not only a central 

estimate of the response for each RWB, but is also able to quantify the degree of 

certainty (or margin of error) in the predictions (for both monitored and unmonitored 

RWBs).  

As an illustration, Figure 25 plots the MRP model predictions for a representative 

sample of five monitored RWBs. The degree of certainty in the predictions is shown 

by the 95% prediction intervals which, on average, include the true, measured MRP 

concentration (marked ‘x’) for 95% of RWBs; in other words, for any individual RWB 

there is a 5% chance that the true MRP concentration will fall outside the calculated 

prediction interval. Note that because MRP concentration is modelled on a log10 scale, 

the prediction intervals are asymmetrical, and tend to be wider for RWBs with higher 

MRP concentrations. Note too that the model has a slight tendency to under-predict 

MRP concentration (and therefore over-predict status) in more polluted watercourses. 

In the case of Lyreen_020 this leads to a misclassification of status (the model predicts 

Poor when the measured status is Bad), although it should be remembered that 

measured status is also subject to sampling error, so it is not possible to say definitely 

whether the measured or predicted status is correct, only that there is a disagreement. 

 

 
Figure 25: Measured (x) and predicted (●, with 95% prediction intervals) in-

river MRP concentration for selected RWBs 
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When assigning a MRP status class to unmonitored RWBs, the prediction intervals 

can be used to quantify the degree of confidence that a RWB is in each of the five 

WFD status classes and, by extension, the confidence that it is achieving at least Good 

status. These calculations mirror the confidence of class results calculated by the EPA 

for monitored RWBs but take account of the prediction error of the statistical model 

rather than the sampling error of the field measurements. 

For macroinvertebrates, the ocat model works slightly differently: rather than predicting 

a Q-value score with associated predictions intervals, it makes a probabilistic 

prediction of WFD status class for each RWB, as illustrated in Table 9 below for three 

RWBs. The most probable class is taken to be the predicted “face value” class, and 

the sum of the probabilities for the High and Good classes gives the degree confidence 

that the RWB is achieving at least Good status. One quirk of this method is that for 

some “borderline” RWBs which are close to the Good/Moderate boundary (e.g. 

Ballinagh_010), it is possible for the most probable “face value” class to be Good, but 

for the combined probabilities of Moderate and Poor to be >0.50, which yields a 

confidence band of “uncertain fail”. A total of 46 unmonitored RWBs exhibit this 

apparent contradiction, which is simply an artefact of two status classes both having 

similar probabilities.2 

 

Table 9: Predicted status class probabilities from the macroinvertebrate model 

for selected RWBs  

RWB Name 

Probability of being 
Face 
value 
class 

Certainty 
band 

High Good Moderate Poor 
At least 
Good 

STONY_010 0.67 0.29 0.03 0.01 0.96 High 
Very 

certain 
pass 

BALLINAGH_010 0.07 0.42 0.38 0.13 0.49 Good 
Uncertain 

fail 

SKANE_010 0.01 0.10 0.35 0.54 0.11 Poor 
Quite 

certain fail 

 

 

 

2 An alternative method for assigning a WFD status class, which ensures there is never a mis-match 

between the face value class and the confidence band, involves calculating the cumulative probability 

(from High to Poor, or from Poor to High, it doesn’t matter), and finding the status class where the 

cumulative probability crosses the 0.5 threshold. This can be thought of as the status class that is at 

the centre of the predicted probability distribution from the model. In the case of Ballinagh_010, the 

cumulative probability approach would give a face value class of Moderate, which is consistent with the 

“uncertain fail” certainty band. The downside of this approach is that it is arguably a less simple and 

intuitive approach that is more difficult to communicate to stakeholders. 
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Confidence of class calculations were performed separately for MRP and 

macroinvertebrates and the full results are included in an Excel workbook that forms 

an electronic appendix to this report (Appendix 4). As a summary, Table 10 

categorises the unmonitored RWBs according to the degree of certainty that each is 

achieving GES. Overall, the MRP model was able to determine whether Good status 

was being achieved with reasonable (at least 75%) certainty for 70.8% of unmonitored 

RWBs, but the macroinvertebrate model achieved the same level of certainty for only 

44.5% of unmonitored RWBs. Again, we suspect that the lower degree of certainty for 

the macroinvertebrate results is due, in part, to a high proportion of “borderline” RWBs 

that are close to the Good/Moderate boundary and therefore inherently more difficult 

to classify as “Good” or “Not Good”.  

 

Table 10: Certainty of status predictions for unmonitored RWBs 

Certainty band (confidence that RWB 
is achieving GES)1 MRP Macroinvertebrate 

Very certain pass (>95%) 660 10 

Quite certain pass (75-95%) 511 151 

Uncertain pass (50-75%) 282 218 

Uncertain fail (25-50%) 265 238 

Quite certain fail (5-25%) 145 190 

Very certain fail (<5%) 12 15 

TOTAL 1875 822 

1 The overall certainty band is the worst of the certainty bands for the two quality elements 

 

The information shown in Table 10 may be used to prioritise RWBs for expert judgment 

review, focusing attention on those borderline cases in the ‘uncertain pass’ and 

‘uncertain fail’ categories. 
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4. Discussion and recommendations 

 

4.1 Strengths of the approach  

This study used a regression modelling approach to identify and quantify the causes 

of spatial variation among RWBs in MRP concentration and macroinvertebrate status. 

This approach is the same as was used previously by APEM to model the variation in 

lake quality elements (APEM, 2022a). Regression modelling unlocks the full potential 

of the data collected by the EPA’s river monitoring programme by explicitly revealing 

the key factors that determine a RWB’s trophic status and modelling how ecological 

status changes along a gradient of nutrient enrichment pressure. In this sense, the 

approach is consistent with WFD guidance (European Commission, 2003a) because 

the predicted status of unmonitored RWBs is based upon empirical data from 

hydrologically, geomorphologically, and geographically similar RWBs.  

As discussed in the lake extrapolation report (APEM, 2022a) the choice of GAMs 

offers a number of advantages over hierarchical clustering (as used by Wynne and 

Donohue, 2016) and commonly used classification techniques such as k-nearest 

neighbours and classification trees: 

• GAMs provide a flexible, data-driven way of describing non-linear relationships. 

Relationships are not constrained to be linear, and the analyst is not required 

to make (and subsequently test) any prior assumptions about the form of the 

relationship. Furthermore, in-built regularisation of predictor functions helps 

avoid overfitting (that is, the wiggliness of the curves is optimised 

automatically).  

• Spatial variation caused by unknown factors can be modelled explicitly, which 

is helpful not only for boosting the fit of the model, but also for suggesting 

additional predictor variables (or refinements to existing ones).  

• GAMs are easy to interpret. In contrast to some ‘black-box’ machine learning 

techniques, the curves produced by GAMs clearly show how the predictor 

variables act, individually and in combination, to drive variation in the response. 

Furthermore, their flexibility means that GAMs are adept at revealing ecological 

thresholds. 

• The GAM models developed in the present study have proven to be capable of 

achieving a reasonably high degree of classification accuracy: around 50-60% 

when predicting individual status classes, and around 75-80% when classifying 

rivers as Good or better vs. Moderate or worse.   

• Finally, GAMs, like other regression-based techniques, are also able to quantify 

the degree of certainty (or margin of error) in the predictions. As illustrated in 

Section 3.5, using this approach it is possible to quantify the degree of 

confidence that an unmonitored RWB is truly in each of the five WFD status 

classes.  
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A key achievement of this study was the successful integration of a variety of EPA 

datasets and modelling tools. Notably, the EPA’s SLAM model, which has previously 

been used to model nutrient load to rivers and estuaries (Mockler et al., 2016; Mockler 

et al., 2017), was combined with estimates of catchment run-off generated by the 

QUBE model (Bree, 2018) to yield an estimate of the flow-weighted mean TP 

concentration, which proved to be a strong predictor of in-river MRP concentration. 

Notwithstanding some limitations of these datasets and models (discussed in Section 

4.2 below), these results validate the use of the SLAM model for understanding 

phosphorus dynamics in Irish rivers and illustrate the potential benefits of integrating 

datasets and tools that originally may have been developed for other purposes. 

Furthermore, the application of statistical models to impute missing values in many of 

the variables (detailed in Appendix 1) has yielded a complete and up-to-date set of 

RWB characteristics which are available for use in future studies. 

4.2 Limitations of the approach  

Whilst the approach was successful in predicting the status of unmonitored RWBs, 

some predictor variables were incomplete or had other data quality issues. Other 

potentially important variables could not be quantified, and the regression-modelling 

methodology itself rests on some important assumptions. These limitations are 

discussed in further detail below. 

4.2.1 Data issues 

Water body connectivity. Some variables, most notably the SLAM-modelled TP 

loads, were available at an RWB-scale and needed to be aggregated to characterise 

influences at a catchment-scale. Aggregation was achieved using a ‘linkages table’ 

listing the RWBs that are immediately upstream of, and therefore hydrological 

connected to, each focal RWB. Unfortunately, the linkages table was not fully complete 

and contained both missing and spurious linkages. Using catchment area estimates 

from the QUBE model as external validation allowed some of the linkages to be fixed, 

but upstream-aggregated variables were still over- or under-estimated for a small 

proportion of RWBs. 

Geographic proximity. As also noted for lakes by Wynne and Donohue (2016), the 

catchment variables derived for each RWB do not currently consider the proximity to 

the river itself. For example, the SLAM Framework predicts phosphorus losses based 

on the percentage land use within the RWB catchment but does not consider how 

close these sources are to the river itself, and therefore the potential for nutrient 

transport. 

QUBE flow/runoff estimates. It is assumed that the QUBE (EPA HydroTool) model 

provides a good estimate of flow at the defining station in each RWB. However, the 

EPA HydroTool model points are not always located at (or close to) the RWB outflow 

and, in some cases, are located on tributary streams which can give a potentially mis-

leading estimate of flow if not identified (see Appendix 1). 
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TP vs MRP. The EPA uses Molybdate Reactive Phosphorus (MRP) to classify the 

phosphorus status of RWBs, whereas the SLAM framework estimates losses of Total 

Phosphorus (TP). By definition, TP provides a worst-case estimate of biologically 

available phosphorus, but will over-estimate MRP by a variable amount depending on 

the mix of particular and dissolved phosphorus fractions from different sources. To 

some extent this shortcoming is mitigated by the use of GAMs, which can flexibly 

model non-linear relationships rather than assuming a linear or 1:1 relationship 

between TP and MRP concentration, and by using different variables to represent 

“urban” and “rural” sources of phosphorus. Nonetheless, the predictive performance 

of the MRP model might be expected to improve if it were possible to estimate MRP 

instead of TP loads. 

TP load estimation from agricultural activity. The SLAM framework covers all major 

sources of TP from point and diffuse sources (see Appendix 1) and so provides a 

reasonably comprehensive assessment of TP loads. The model includes estimates of 

TP losses from farms, but these figures assume compliance with regulatory limits on 

the spreading of waste to land; excess spreading is not accounted for, and the model 

may therefore under-estimate TP loads from these sources by an unknown amount 

for some RWBs.  

4.2.2 Missing factors 

Upstream retention. The SLAM framework includes a simple lake retention model 

which reduces loads from catchments draining through all lakes above a threshold 

size of 50 ha. The retention factors used (24% for TP and 10% for nitrogen) are derived 

from studies in the Lee catchment (Sullivan et al., 1995) and whilst they provide a 

useful approximation at a river basin or national scale, the level of retention in 

individual lakes is likely to vary considerably, dependent on factors such as residence 

time (Foy, 1992). For this reason, the TP load estimates used in this study had the 

retention factor set to 0%, meaning that total TP loads were over-estimated by an 

unknown amount for some RWBs (especially those which have a large lake in close 

proximity upstream). 

Other stressors. Stressors such as acidification, invasive species and pesticides can 

potentially influence the status of macroinvertebrate communities, but these factors 

were not included in the predictive regression models because it was not possible to 

categorise or quantify the strength of these pressures for every RWB. 

Seasonal and inter-annual variation. The present study focused on assessing status 

over a three-year reporting period (2019-21) and used data from SLAM and QUBE 

representing long-term annual average TP loads and flows. The regression models do 

not, therefore, capture seasonal and inter-annual variability in nutrient loads that can 

be important in determining water quality and ecological responses on a river-specific 

basis. Notably, the extent and timing of seasonal peaks in MRP concentration can aid 

in understanding the relative importance of external and internal phosphorus loading, 

as well as the contribution of different catchment sources (e.g., point sources may 

dominate inputs during low flows and diffuse sources may dominate inputs under high 
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flow conditions). The flexibility of GAMs means, however, that the regression models 

could be extended to also consider temporal as well as spatial variation in MRP 

concentration, which could potentially help to improve predictions of status for 

individual RWBs.  

4.2.3 Statistical modelling 

Representation of catchment networks. Being hydrologically connected, the 

ecological status at any given location on the river network is influenced by conditions 

upstream (and potentially downstream as well). In this study, various approaches were 

used to try to account for this spatial correlation: (i) variables describing conditions in 

immediately upstream RWBs were included in the models, but they were of limited 

predictive value because 44.2% of RWBs are headwaters that lack an upstream RWB, 

and because not all upstream RWBs are monitored; and (ii) hydrological catchment 

was included as a predictor to represent systematic differences among catchments, 

but this is probably too coarse for modelling status at a RWB scale. Due to the 

shortcomings of these approaches, the final models simply include a 2D 

easting/northing smooth to represent unexplained geographic variation in MRP 

concentration and macroinvertebrate status, but this too can be criticised on the 

grounds that it smooths across catchment watersheds (i.e., predictions are influenced 

by straight-line distance to other monitored RWBs, and ignore whether or not a nearby 

RWB is hydrologically connected or even in the same catchment).  

Under-estimation of effect sizes. The statistical regression models developed in this 

study are based on other models and datasets which themselves are subject to a 

variety of systematic and random errors. Error in the measurement of predictor 

variables results in weaker regression relationships and reduces their statistical 

significance, so it is possible that the effect of some variables has been under-

estimated, or that more subtle effects of other variables may have been overlooked 

altogether. Despite this, the final models were able to successfully identify a small 

number of variables that explained a high proportion of the variation in MRP 

concentration and macroinvertebrate status among RWBs. 

Confidence intervals. The calculated confidence intervals around the MRP 

predictions assume that all the predictor variables for each river are known without 

error. In reality, many predictors are subject to measurement or modelling errors, 

which will propagate through to add uncertainty to the model predictions. 

Unfortunately, these errors are often difficult or impossible to quantify, making it 

difficult to undertake a comprehensive assessment of uncertainty. This issue of 

predictor uncertainty is partially mitigated through the use of log-transformations, 

which reduce the sensitivity of the predictions to small changes in the values of those 

predictor variables.  

Representativeness. Using data from monitored RWBs to predict the status of 

unmonitored rivers implicitly assumes that the monitored RWBs are representative of 

the full population of 3192 RWBs. Figure 4 confirms that the EPA’s monitoring 
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programme is broadly representative of the 12 WFD river typology groups. Generally, 

70-80% of RWBs are monitored for MRP and/or macroinvertebrates, however this is 

lower (60-70%) for the less common RWB types 11, 21 and 24. There is a small risk 

that the models will be biased towards the behaviour of the more common river types. 

This risk is partially mitigated by the inclusion in the models of slope and hardness as 

candidate predictor variables, so that any systematic differences among typology 

groups can be accounted for. More difficult to control for is the risk of bias if there is 

tendency for monitoring to target, within a type, those RWBs that are known to exhibit 

symptoms of eutrophication.  

Extrapolation. The modelled regression relationships hold true over the range of 

characteristics represented by the monitored RWBs in the calibration dataset, but care 

must be taken when extrapolating the models to predict the status of unmonitored 

RWBs that have more extreme characteristics. This is particularly the case with GAMs 

because their flexibility permits the ends of the curves to be heavily influenced by 

individual RWBs when data are sparse. In addition to the risk of bias that this poses, 

the predictions will be less certain, and the prediction intervals will be wider. Figure 26 

(MRP) and Figure 27 (macroinvertebrates) show, however, that the monitored rivers 

do, generally, cover the full range of characteristics of the 3192 WFD rivers, which 

means the models can be used with reasonable confidence to predict the status of 

unmonitored RWBs. 
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Figure 26: Distribution and coverage of monitored (green) and unmonitored (red) RWBs with respect to the key predictor 

variables used for modelling MRP 
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Figure 27: Distribution and coverage of monitored (green) and unmonitored RWBs (red) with respect to the key predictor 

variables used for modelling macroinvertebrate Q-value status 
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4.3 Recommendations  

4.3.1 Model refinements  

Given the limitations discussed in Section 4.2 above, there is clearly potential to refine 

the regression models and further improve the accuracy of the status class predictions 

for unmonitored RWBs. Further refinements are likely to deliver diminishing returns, 

however, and so the following recommendations are therefore ranked in descending 

priority order, starting with activities that are relatively straightforward and/or expected 

to yield the biggest improvements.  

It is worth noting that including additional predictor variables is not guaranteed to 

improve the fit and predictive performance of the models; additional predictors will only 

be beneficial if they are uncorrelated with existing predictors, and if they explain 

variation among RWBs that is not already explained by geographic location (i.e., 

easting/northing).  

1. In the short term, it is recommended that the RWB linkages file, which lists 

immediately upstream RWBs, is checked and refined to correct any missing or 

spurious linkages. This would immediately allow the catchment-scale variables 

to be re-calculated and more accurate estimates of catchment characteristics 

and upstream water quality to be used as predictors in the current models. It 

would also facilitate the use of locally averaged Markov Random Field (MRF) 

smooths, which model data over discrete spatial units such as RWBs, and use 

data from neighbouring units to predict responses in the focal unit. 

2. In the longer term, the development of a complete and continuous river 

network layer would support the use of spatial stream network (SSN) models. 

SSN models are a class of advanced regression model that explicitly represent 

spatial autocorrelation within dendritic drainage networks using a covariance 

structure based on e.g., along-channel distance or the degree of hydrological 

connectivity (Isaak et al., 2014; O’Donnell et al., 2014). By providing a much 

more sophisticated representation of spatial variation in water quality and 

ecological status within river catchments, SSN models have been shown to 

achieve superior predictive performance to other spatial modelling techniques 

and are also capable of yielding predictions at any point on the river network, 

not just at the defining (downstream) station within each RWB. SSN models 

have been used successfully to model spatio-temporal variation in river nutrient 

concentrations (O’Donnell et al., 2014), water temperature (Jackson et al., 

2017) and macroinvertebrate indices (Frieden et al., 2014) but critically they 

require a complete (unbroken) river network layer in order to calculate the 

covariance structure. 

3. Dissolved oxygen (DO) saturation is an important factor influencing 

macroinvertebrate status but is relatively poorly estimated for unmonitored 

RWBs. At present only 1393 (~44%) of 3192 RWBs are currently monitored for 

DO, and DO saturation for unmonitored RWBs was infilled using a very simple 



APEM Scientific Report P00009877 

  

January 2023 v2 - Final Page 55 

spatial interpolation model. An improved understanding and representation of 

the factors that influence DO – for example the degree of groundwater 

contribution (Jenny Deakin pers. comm.) – would allow an improved model to 

be developed for the infilling process, which should in turn lead to 

improvements to the macroinvertebrate model. 

4. Similarly, ammonium concentration is expected to have a strong influence on 

macroinvertebrate status. In this case, 1320 (~41%) of RWBs are monitored for 

ammonium, and as part of this project ammonium concentrations were 

modelled for RWBs where this data was missing. This model comprised 

geographic position (easting/northing), total organic nitrogen loading as 

calculated from the SLAM model, and the percentage of the surrounding RWB 

that is urbanised, and explained just 28.9% of the variation in ammonium 

concentration. An improved understanding and representation of the factors 

that influence ammonium concentration – for example, drained organic soils 

can be an important source of elevated ammonium (Jenny Deakin pers. comm.) 

– would allow an improved model to be developed for the infilling process, 

which should in turn lead to improvements to the macroinvertebrate model. it 

should be noted, however, that ammonium and MRP concentrations were 

strongly correlated with each other, so the modelled relationship between MRP 

and macroinvertebrate status may already partially account for the influence of 

ammonium. 

5. Given the strong influence of TP loads on in-river MRP concentration and 

macroinvertebrate status, it is recommended that the EPA explores options for 

improving the estimation of phosphorus loads to better account for agricultural 

loadings, accounting for nutrient retention in upstream lakes and rivers and, 

crucially, adjusting the export coefficients to estimate biologically available 

MRP instead of TP. 

6. It is recommended that the fit of the current models is examined in detail in 

order to identify potentially important factors that may be missing or poorly 

represented at present. Focusing on RWBs with the largest residuals (see 

Appendices 2 and 3) may be especially instructive. For example, where under-

prediction of MRP concentration indicates a potentially important unknown 

source of phosphorus, an investigation is recommended to determine whether 

an important catchment source has not been represented fully within the SLAM 

model. For example, RWB LOUGHNAMINOO STREAM_010 

(IE_WE_34L040200) in County Mayo returned the highest residuals from the 

MRP model (Figure 56, Table 11), and a brief desk-based investigation 

revealed that the defining station for this RWB was downstream of a livestock 

mart which may be contributing to the higher concentrations of phosphorus than 

currently indicated by the SLAM model. Any factors identified can then either 

be incorporated into the regression models (if they can be quantified) or else 

taken into account when deciding whether to apply an expert judgment over-

ride. 
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4.3.2 Future monitoring 

The ability to predict, with reasonable accuracy, the status class of unmonitored RWBs 

presents the EPA with new options for designing its WFD monitoring programme. 

“Model-based monitoring” refers to a monitoring strategy whose goal is to collect, as 

efficiently as possible, the data necessary to calibrate a predictive model. Any future 

changes to the RWB monitoring network could therefore be made with a view to 

optimising the predictive performance of the regression models. 

For instance, should the EPA wish to reduce its monitoring budget, then existing 

RWBs could be screened to identify those that provide redundant information, thereby 

reducing costs whilst minimising loss in predictive performance. Conversely, if the EPA 

wished to expand its monitoring network, new RWBs could be selected for monitoring 

in a way that maximises gains in predictive performance across the set of 3192 RWBs. 

Similar approaches have been used for designing river water temperature networks in 

Scotland (Jackson et al., 2016) and England (APEM, 2022b), and optimising the 

national electrofishing programme in Wales (APEM, 2019). 

A further recommendation, proposed by CDM Smith (2019), is to align operational 

monitoring of rivers and lakes to ensure, wherever feasible, that the inflowing rivers to 

lakes are monitored for flow and nutrients as well as the lakes themselves, particularly 

in the inter-drumlin landscape. 

4.4 Application in future reporting cycles 

The statistical modelling workflow developed in this study is coded in R, available to 

run as an .Rmd script file and therefore fully documented, auditable and reproducible. 

To classify the status of unmonitored RWBs in future reporting cycles, the following 

data will need to be assembled: 

• updated MRP and DO concentrations and macroinvertebrate Q-values for 

monitored RWBs for the relevant reporting period; 

• updated TP loads (from SLAM) for all RWBs (to align with the new reporting 

period); and 

• updated MQI scores (if there have been any changes). 

This is the minimum amount of data required; the physical (flow, slope etc.) and 

chemical (hardness etc.) characteristics of the RWBs and their catchments may be 

assumed to be unchanged, but newer, improved estimates should be used if available. 

Additional variables could also be assembled and used as predictor variables in the 

models if desired. The structure of the master input data table (especially the column 

names) must not be changed; only the data should be updated. 

Using the updated dataset, the models can then be updated before being applied to 

predict the status of each unmonitored RWB. The script automates most of this 

workflow, the exceptions being (i) the need to manually repeat the model selection 

process to determine which variables should be retained in the final models, and (ii) 
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the need to confirm that the models remain fit-for-purpose (i.e., have acceptable 

accuracy and are not unduly biased).  
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6. Abbreviations used in this report 

 

AIC  Akaike Information Criterion 

BIC  Bayesian Information Criterion 

BQE  Biological Quality Elements 

CIS  Common Implementation Strategy 

CORINE  Coordination of Information on the Environment 

DO  Dissolved Oxygen 

EPA   Environmental Protection Agency 

EQR  Ecological Quality Ratio 

EQS  Environmental Quality Standards 

GAM  Generalised Additive Model 

GES  Good Ecological Status 

GIS   Geographic Information System 

MQI  Morphological Quality Index 

MRF  Markov Random Field (GAM smooth) 

MRP  Molybdate Reactive Phosphate 

NIEA  Northern Ireland Environment Agency 

RBMP River Basin Management Plan 

RHAT River Habitat Assessment Technique 

RWB River Water Body 

SANICOSE  Source Apportionment of Nutrients in Irish Catchments for On-Site 

Effluent model 

SLAM  Source Load Apportionment Model 

SSN  Spatial Stream Network 

TP   Total Phosphorus 

WFD   Water Framework Directive  
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Appendix 1 Data sources and data processing 

 

Catchment area 

A “linkages table” with details of the immediately upstream water bodies of each focal 

RWB was provided by the EPA. This was restructured into a matrix in R with both 

vertices labelled with the water body codes. From this it was possible to generate a 

list of all the upstream water bodies for each RWB. Using this structure, the catchment 

areas were aggregated to calculate the total catchment area (in km2) for each RWB 

(see Table 5). From this data, headwaters were identified (where the catchment area 

was the same as the area of the focal RWB), and an “upstream” area was calculated 

for each RWB by subtracting its area from the total catchment area. 

The catchment area calculations were validated using catchment areas derived from 

the QUBE flow model. Figure 28 highlights differences between the calculated 

catchment area (on the x-axis) and the QUBE hydrological catchment area (on the y-

axis). As the QUBE flow estimation points are not always located at the defining 

stations used for WFD monitoring, slight differences between the two values were to 

be expected (shown in red). More problematically, however, there were known issues 

with the linkages file; these included breaks (where a link is missing) and loops, which 

caused the calculated area to be much smaller than the QUBE catchment area (shown 

in blue), and also spurious connections, which caused the calculated area to be much 

larger than the QUBE catchment area (shown in green). The latter situation was more 

difficult to diagnose because some QUBE points were found to be on a tributary 

stream, which resulted in the QUBE catchment area under-estimating the true 

catchment area of the RWB. 
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Figure 28: Validation of calculated catchment areas against QUBE hydrological 

catchment areas  
Area flags: 0 = calculated catchment and QUBE areas similar (difference is <1% and <50 km2); 

1 = QUBE area >50 km2 smaller than the calculated catchment area; 2 = QUBE area >1% larger 

than the calculated catchment area 
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Channel slope  

Data on mean channel slope, measured in m/m, was available for the majority of 

RWBs, with data missing only for the 26 cross-border rivers.  

A simple GAM was developed to interpolate the missing RWBs, with slope modelled 

as a function of easting/northing to account for spatial variation (Figure 29, Figure 30). 

Overall, the model explained 47.7% of the variation in slope (Figure 31). Figure 32 

illustrates the relationship between slope and easting/northing. The final model was 

used to predict channel slope for the remaining 26 rivers. 

 

Figure 29: Residuals plots for the slope model 



APEM Scientific Report P00009877 

  

January 2023 v2 - Final Page 66 

 

Figure 30: Statistical summary of the slope model   

 

Figure 31: Predicted vs measured slope  
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Figure 32: Partial effects plots showing the modelled effect of easting/northing 

on channel slope 
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Hardness 

Data on water hardness (as indexed by the percentage of calcareous geology) within 

the immediate RWB was available for all RWBs except 26 cross-border RWBs.  

The hardness data were logit-transformed, and a simple GAM was developed to infill 

the missing RWBs. Hardness was modelled as a function of easting/northing to 

account for spatial variation (Figure 33, Figure 34). Overall, the model explained 

56.1% of the variation in hardness (Figure 35).  

Figure 36 illustrates the relationship between hardness and easting/northing. The final 

model was used to predict hardness for the remaining 26 rivers. 

 

Figure 33: Residuals plots for the hardness model 
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Figure 34: Statistical summary of the hardness model   

 

 

Figure 35: Predicted vs measured hardness 
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Figure 36: Partial effects plots showing the modelled effect of easting/northing 

on hardness 

 

To estimate hardness at a catchment scale, the area (in km2) of calcareous geology 

in the immediate RWB was calculated, then aggregated across all upstream RWBs 

(using the same “linkages” method used to calculate catchment area, see above) and 

expressed as a percentage of the total catchment area. 

Runoff 

Flow data was provided by the EPA and included QUBE data. QUBE (formerly known 

as the EPA HydroTool) is a model that generates natural flow duration curves in 

ungauged catchments from flows at 145 gauged catchments of similar character, 

using a procedure called Region of Influence which is based on catchment descriptors 

(Bree, 2018). The model does not take into account artificial influences, for example 

abstractions or discharges. 

For each WFD river, the naturalised annual mean flow (NATAMF) in m3/s (converted 

to m3/yr) was extracted from the QUBE estimation point that was closest to the 

downstream end of the RWB. Data was available for 2811 rivers. QUBE data for nine 

rivers was removed after being identified as incorrect during the validation of the 

catchment area calculation (see above).  

The annual mean flow (m3/yr) was divided by the hydrological catchment area 

upstream of the QUBE estimation point (km2) to give a standardised measure of 
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annual runoff (m3/km2/yr). Eliminating the effect of catchment size in this way allowed 

geographic variation in run-off to be modelled so that estimates of runoff could be 

derived for the 390 rivers lacking QUBE data. 

Using the QUBE data, a GAM was developed to understand and quantify the causes 

of variation in runoff. Specifically, runoff was modelled as a function of the following 

predictor variables: 

• mean catchment slope (log10-transformed); 

• upstream hardness (as an indicator of the geology of the upstream catchment); 

and 

• easting/northing (to account for other sources of spatial variation). 

Backward model selection using BIC was used to retain only the most relevant 

predictor variables; in this case, all three variables were retained in the final model 

(Figure 37; Figure 38). Overall, the model explained 78% of the variation in runoff 

(Figure 39). Figure 40 illustrates the relationship between runoff and each variable 

whilst holding the other variables constant at their mean values.  

The final model was used to predict runoff for the remaining 390 rivers; Figure 41 maps 

measured and predicted runoff for all 3192 rivers.  

The annual average flow (m3/yr) for all 3192 WFD river outlets was then calculated by 

dividing the annual runoff (either modelled or predicted, m3/km2/yr) by the river 

catchment area (km2). As the position of the QUBE estimation points varied within an 

RWB, this calculation assumes that runoff across the hydrological catchment 

(upstream of the QUBE estimation point) is constant. 
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Figure 37: Residuals plots for the runoff model 

 

Figure 38: Statistical summary of the runoff model   
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Figure 39: Predicted vs measured runoff for the rivers with QUBE data 
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Figure 40: Partial effects plots showing the effect of each variable on runoff 
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Figure 41: Map of measured and predicted runoff for all 3192 rivers
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Phosphorus loading 

The EPA’s Source Load Apportionment Model (SLAM, v303) was used to estimate the 

total annual TP load entering each WFD RWB following attenuation or treatment 

(Mockler et al., 2017; Mockler and Breun, 2018). The model contains a number of sub-

models that take account of point source discharges from wastewater treatment works, 

industrial sources, surface water overflows, and septic tanks (using a model called 

SANICOSE, Gill & Mockler, 2016). The ‘Catchment Characterisation Tool’ was used 

to produce sub-models for pasture and arable land-use (Archbold et al., 2016).  

Using the Waterbody layer, the SLAM framework collated the following spatial 

datasets to characterise the land-use and physical characteristics of each WFD RWB: 

• PIP models (developed initially by the Pathways and CatchmentTools 

Research Projects, and by the EPA Catchments Unit) (Mockler et al., 2017); 

• CORINE land use update 2018; 

• Good Agricultural Practice Regulations; 

• Agricultural LPIS and AIM; 

• soil classification and natural soil drainage map; 

• depth to bedrock map; 

• subsoil permeability (K) map; 

• national recharge map; 

• potential bedrock denitrification map; and 

• aquifer bedrock boundaries. 

Using these datasets, SLAM was used to estimate TP loads from the following point 

and diffuse sources: 

• municipal wastewater treatment plants; 

• septic tank systems; 

• other licensed discharges; 

• pasture; 

• arable; 

• forestry; 

• peatlands; 

• urban diffuse; and  

• atmospheric deposition on water. 

These estimates were combined to estimate the total annual TP loading (in kg/ha/yr) 

from land within each RWB from “urban” sources from homes and businesses 

(wastewater, diffuse urban, septic tanks and other licensed discharges) and “rural” 

land-based sources (pasture, arable, forestry, peatlands and atmospheric deposition 

on water). However it should be noted that for cross-border RWBs, only the fraction of 

the RWB area within the Republic of Ireland can be modelled by SLAM, so the loads 

for these RWBs are under-estimates. 

Using the catchment area data, the “local” (RWB-scale) loads were summed to 

estimate the total TP load to each RWB (in kg/yr) from the upstream catchment. Both 
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the “local” and “upstream” loads (kg/yr, converted to mg/yr) were then divided by the 

annual flow (m3/yr, converted to l/yr) at the RWB outlet to estimate the annual mean 

flow-weighted TP concentration in each RWB (mg/l) due to local and upstream 

sources. 

The version of SLAM used in this research did not consider the following pressures: 

• non-licenced industries; 

• water treatment plants; 

• WWTP emergency overflows; 

• non-compliance not captured by AERs; 

• human burials; 

• animal burials; 

• abstractions/diversions; 

• aquaculture; or 

• Historically Polluted Sites. 

For reference, Figure 42 lists the input data that was included in SLAM v303, including 

the calculation methods and time period of each data input. 

 

Figure 42: SLAM v303 input data   
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Dissolved oxygen saturation 

Measured data on 3-year mean DO saturation, was available for 1393 RWBs. Using 

the available data, a GAM was developed to infill the missing RWBs. DO saturation 

was modelled as a function of easting/northing to account for spatial variation (Figure 

43, Figure 44). 

Overall, the model explained 35.8% of the variation in DO saturation (Figure 45). 

Figure 46 illustrates the relationship between DO saturation and easting/northing. The 

final model was used to predict DO saturation for the remaining 1799 RWBs, as 

illustrated in Figure 47. 

 

Figure 43: Residuals plots for the DO model 
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Figure 44: Statistical summary of the DO model   

 

Figure 45: Predicted vs measured DO saturation  
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Figure 46: Partial effects plot showing the modelled effect of easting/northing 

on DO saturation 

 



APEM Scientific Report P00009877 

January 2023 v2 - Final Page 81 

 

Figure 47: Map of measured and predicted DO saturation for all 3192 RWBs 
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Ammonium concentration 

Measured data on 3-year mean ammonium concentration, was available for 1320 

RWBs. Using the available ammonium data, a GAM was developed to infill the missing 

RWBs. Ammonium concentration was modelled as a function of: (i) easting/northing 

to account for spatial variation, (ii) the percentage urban land use in the RWB, and (iii) 

the SLAM-modelled Total Nitrogen (TN) loading from the RWB, expressed as a flow-

weighted annual mean concentration and log10-transforemed to reduce skew (Figure 

48, Figure 49). 

Overall, the model explained 28.4% of the variation in ammonium concentration 

(Figure 50), and concentration increased strongly with TN loading and percentage 

urban land use (Figure 51). The final model was used to predict ammonium 

concentration for the remaining 1872 rivers, as illustrated in Figure 52. 

 

Figure 48: Residuals plots for the ammonium model 
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Figure 49: Statistical summary of the ammonium model   

 

Figure 50: Predicted vs measured ammonium concentration (log-log scale) 
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Figure 51: Partial effects plots showing the modelled effect of easting/northing 

and log10 transformed Total Nitrogen loading on ammonium concentration 
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Figure 52: Map of measured and predicted ammonium concentration for all 

3192 RWBs 
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Appendix 2 Phosphate (MRP) model  

 

Figure 53: Statistical summary of the MRP model 
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Figure 54: Residuals plots for the MRP model 
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Figure 55: Comparison of the residuals from the MRP model for the WFD 

typology groups 
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Figure 56: Comparison of the residuals from the MRP model for the different 

river catchments 
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Figure 57: Map of residuals showing where the true measured MRP 

concentration is higher (red) or lower (blue) than the concentration predicted 

by the MRP model  
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Table 11: RWBs with the top 10 largest positive and negative residuals in the 

MRP model 

RWB code 
Catchment 
area (km2) 

River name 
Measured 

MRP 
concentration 

Predicted 
MRP 

concentration 

Log 
residuals 

IE_WE_34L040200 25.93 
LOUGHNAMINOO 
STREAM_010 

0.46205 0.014933 1.490546 

IE_SW_21F010510 20.26 FINNIHY_020 0.2025 0.01638 1.092106 

IE_EA_07A010500 34.56 ATHBOY_060 0.278725 0.033569 0.919235 

IE_SE_12B020340 45.29 BORO_040 0.233239 0.028154 0.918259 

IE_SH_26C030200 15.3 CASTLEGAR_020 0.193481 0.025529 0.879611 

IE_EA_10P010500 18.3 POTTER'S_020 0.167205 0.02786 0.778271 

IE_SW_22B021300 11.73 BEHY (KERRY)_030 0.08375 0.016795 0.697799 

IE_NW_40D010400 11.81 DONAGH_030 0.203021 0.041003 0.694721 

IE_SH_24A020800 11.81 
AHAVARRAGA 
STREAM_010 

0.329261 0.068263 0.683358 

IE_NW_36C030300 35.47 CULLIES_010 0.21575 0.045018 0.680566 

IE_SH_25R020200 15.11 ROCK (BIRR)_020 0.007933 0.024548 -0.49057 

IE_EA_10A031050 18.91 AVOCA_020 0.006557 0.020842 -0.50224 

IE_SE_12U010500 14.55 URRIN_050 0.0114 0.037226 -0.51394 

IE_SE_16B020450 13.25 
BLACKWATER 
(KILMACOW)_040 

0.009625 0.033182 -0.5375 

IE_SH_23O030300 30.33 
OWENMORE 
(KERRY)_010 

0.0054 0.018935 -0.54486 

IE_NW_36R020200 11.51 ROO_010 0.0068 0.024354 -0.55406 

IE_SE_12B020040 18.94 BORO_010 0.005167 0.018842 -0.56192 

IE_SE_12B010100 15 BANN_010 0.0056 0.020504 -0.56365 

IE_NW_39C020500 15.92 CRANA_030 0.009067 0.036946 -0.61012 

IE_SW_18F050030 16.21 FUNSHION_010 0.00675 0.0279 -0.61631 
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Appendix 3 Macroinvertebrate model  

 

Figure 58: Statistical summary of the macroinvertebrate model 
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Figure 59: Residuals plots for the macroinvertebrate model 
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Figure 60: Comparison of the residuals from the macroinvertebrate model for 

the WFD typology groups 
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Figure 61: Comparison of the residuals from the macroinvertebrate model for 

the different river catchments 
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Figure 62: Map of residuals showing where the measured macroinvertebrate 

status (represented by a latent variable) is higher (red) or lower (blue) than that 

predicted by the macroinvertebrate model 
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Appendix 4 River water body results  

An accompanying Excel spreadsheet provides a full set of input data and model 

predictions for all 3192 river water bodies. 

 


