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Executive Summary 

Background 

Under the EU Water Framework Directive (WFD), 812 lakes in Ireland are designated as WFD 

water bodies and their ecological status must be assessed and reported on a six-year cycle. 

As it is not economically feasible to monitor every water body, 224 lakes are currently 

classified based on the results of direct monitoring, and the remaining 588 unmonitored lakes 

have status assigned by a combination of extrapolation from monitored lakes and expert 

judgement. 

Aims and objectives 

Building on previous research (Wynne & Donohue, 2016) which used cluster analysis to 

extrapolate status classifications from monitored (donor) lakes to similar unmonitored 

(recipient) lakes, the EPA commissioned APEM Ireland to design and implement a 

methodology for assigning a WFD ecological status class to unmonitored Irish lakes. 

The specific objectives of the project were to: 

• establish a conceptual framework for predicting the status of unmonitored lakes; 

• set out a methodology and stepwise process to be used in assigning status; 

• predict the status of unmonitored WFD lakes; and 

• provide recommendations for future improvements of the process. 

The analysis focused on predicting the status class of the three quality elements that are most 

sensitive to nutrient enrichment: total phosphorus (TP), chlorophyll-a, (a key component of the 

phytoplankton quality element) and macrophytes. The project used 2016-2018 monitoring 

data as this was the most recent period for which concurrent data was available on catchment 

characteristics, land-use and diffuse and point source phosphorus loads. 

Approach 

To aid decisions about which variables were important to include in designing a statistical 

approach to predicting status, a conceptual framework was built based on existing 

knowledge of the mechanisms of lake eutrophication. The conceptual model adopted a 

source-pathway-receptor approach to describe how diffuse and point sources of nutrients 

combine with hydrogeomorphological factors to determine influent and in-lake phosphorus 

concentrations and, in turn, the chlorophyll-a and macrophytes status of each lake. 

To account for natural variation in ecological conditions, the WFD typology of each lake was 

determined based on surface area, mean depth and alkalinity, with statistical regression 

models used to predict alkalinity and depth for lakes that lacked measured data. 

For each quality element in turn, spatial variation among monitored lakes was analysed using 

Generalised Additive Models (GAMs), a flexible regression modelling technique that allows 

non-linear relationships to be described by smooth curves. The conceptual model of lake 

eutrophication was used to guide the selection of candidate predictor variables, and model 

selection was then used to optimise the predictive accuracy of the models. The final models 

were used to predict TP concentration, chlorophyll-a EQR and macrophyte EQR for the  

unmonitored lakes. These predictions were then converted to WFD status classes, combined 
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using the ‘one-out, all-out’ rule to predict the ‘overall status’ of each unmonitored lake, and 

used to quantify the confidence that each lake was achieving Good status.  

Finally, a structured checklist was developed to allow other local/supporting information 

(including expert judgment) to be used as part of a weight of evidence process to validate, or 

potentially override, the predictions from the statistical models.  

Results 

In-lake TP concentration was strongly associated with influent TP concentration, but the 

effect of external nutrient loading on lake water quality was strongly moderated by residence 

time. All else being equal, lakes in Cavan and Monaghan (and to a lesser extent southern 

Cork) had higher in-lake TP concentrations than those in the western coastal counties of 

Donegal, Mayo, Galway and Kerry. Together these factors explained 69.1% of the variation 

among lakes. The final model predicted the correct status class with 61% accuracy and 

predicted with 89% accuracy whether or not a lake was achieving Good status for TP.  

There was a strong negative relationship between TP concentration and chlorophyll-a EQR, 

which was steepest for very high (>200 mg/l) and moderate (ca. 50 mg/l) lakes, plus a weak 

positive relationship between chlorophyll-a EQR and colour. Together these factors explained 

69% of the variation among lakes. The final model predicted the correct status class with 69% 

accuracy and predicted with 89% accuracy whether or not a lake was achieving Good status 

for chlorophyll-a.  

Macrophyte EQR decreased strongly with increasing TP concentration and to a lesser extent 

colour, and was marginally lower in moderate alkalinity lakes. After accounting for these 

effects, lakes in the western coastal areas of Donegal, Galway and Cork had higher predicted 

macrophyte EQRs than lakes in inland and eastern areas, and lakes in Monaghan had 

particularly low predicted EQRs, all else being equal. Together these factors explained 78.2% 

of the variation among lakes. The final model predicted the correct status class with 64% 

accuracy and predicted with 86% accuracy whether or not a lake was achieving Good status 

for macrophytes.  

Typology, depth and area were not retained in the final models, indicating that the modelled 

relationships were common across all lake types. Inspection of the residuals showed that the 

models were equally good at predicting for lakes in karst and non-karst catchments, for large 

and small lakes, and for lakes in each of the 12 typology groups. 

For monitored lakes, the models predicted the correct overall WFD status class with 64% 

accuracy and predicted with 86% accuracy whether or not a lake was achieving at least Good 

status. In only 2 out of 224 cases (0.89%) was the model prediction out by more than 1 status 

class. Around 75% of unmonitored lakes were predicted to be achieving Good overall status, 

compared with 52% of monitored lakes. Low alkalinity lakes had the highest proportion at 

Good or High overall status, whereas moderate alkalinity lakes and small, shallow high 

alkalinity lakes had the lowest proportion. For both monitored and unmonitored lakes, 

macrophytes and/or TP were the most common driving elements. The models were able to 

determine whether or not Good overall status was being achieved with reasonable (at least 

75%) certainty for 85% of lakes. 
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Conclusions and recommendations 

A key achievement of this study was the successful integration of a variety of EPA datasets 

and modelling tools; most notably, the EPA’s SLAM nutrient loading model was combined with 

estimates of catchment run-off generated by the QUBE model to yield an estimate of the 

influent TP concentration, which proved to be a strong predictor of lake status. Furthermore, 

the application of statistical models to determine missing values for many of the variables has 

yielded a complete and up-to-date set of catchment and lake characteristics which are 

available for use in future studies. 

Whilst the approach was successful in predicting the status of unmonitored lakes, some 

predictor variables were incomplete or had other data quality issues, and other potentially 

important variables could not be quantified. Recommendations were therefore made for 

improving and updating component datasets. The 224 monitored lakes used to calibrate the 

statistical models generally cover the full range of characteristics of the 812 WFD lakes, which 

means the models can be used with confidence to predict the status of unmonitored lakes. 

The only exception is the relatively poor coverage of lakes with very low modelled influent TP 

concentrations. Suggestions are made for targeting future monitoring activities to optimise 

model calibration. 

Finally, the statistical modelling workflow developed in this study is fully documented, auditable 

and reproducible, meaning that the approach can be used to classify the status of new lakes 

or produce updated classifications in future reporting cycles.  
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1. Introduction 

1.1 Background to this project 

The EU Water Framework Directive (WFD; 2000/60/EC) is delivered in six-year cycles, each 

cycle requiring a new River Basin Management Plan and programme of measures to be 

developed and implemented, with the status of every designated water body to be assessed 

and reported on. The primary means through which status is assessed is through the results 

of monitoring. Operational monitoring must be undertaken for all water bodies that have been 

identified as being at risk of failing the relevant environmental objectives under Article 4 of the 

WFD.  

It is not economically feasible to monitor all water bodies for all conditions, and many are not 

directly monitored. In Ireland, there are 812 lakes designated as WFD water bodies, of which 

only 224 have status assigned based on the results of direct monitoring. The remainder have 

their status determined by a combination of extrapolation from monitored lakes and expert 

judgement.  

In order to facilitate assessment of unmonitored lakes, the Environmental Protection Agency 

(EPA) commissioned a study by Wynne & Donohue (2016), which examined options for 

classifying lakes based on typology, and then extrapolated results from monitored lakes to 

others. This approach was then applied to the previous and most recent reporting cycle. 

More recently, the Centre for Ecology and Hydrology (Taylor et al., 2021) conducted a study 

to demonstrate an approach to establish WFD-compliant nutrient management objectives for 

achieving Good Ecological Status (GES) in lakes. This study’s findings, in particular on the 

biological response of algae and macrophytes to water transparency and colour in Irish lakes, 

led to the inclusion of water colour as a parameter in the modelling of biological elements. In 

addition, CDM Smith (2019) examined Irish lakes at risk of not achieving GES due to historic 

accumulation of phosphorus pools leading to a lag time in the response to measures. This 

study highlighted the importance of considering lake residence times in modelling their 

phosphorus concentration, and of understanding historic phosphorus inputs and possible 

internal phosphorus loading in lakes. 

Since the Wynne & Donohue (2016) study was completed, new datasets have become 

available and the EPA wished to review and update its assessment process for unmonitored 

lakes. APEM Ireland was commissioned to develop an updated approach for assigning 

ecological status to unmonitored Irish lakes. This report provides the outcome of that work, 

designing and applying a series of statistical models to extrapolate the overall ecological status 

of unmonitored Irish lakes. 

1.2 Water Framework Directive guidance  

It is recognised that it is not economically feasible to monitor all water bodies for all conditions. 

Therefore, the Directive allows the grouping of water bodies based on type (see Section 2.4 

for details of the WFD lake typology) and on similar hydrological, geomorphological, 

geographical or trophic conditions (European Commission, 2003a).  Intuitive (expert 

judgment) approaches or more sophisticated multivariate classification procedures can be 

used for identifying groups of similar water bodies, although guidance from the Common 

Implementation Strategy (CIS) warns that ‘black box’ approaches should be used with caution, 
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as there is no guarantee that the composition of the resulting groups will have a recognisable 

or obvious rationale (European Commission, 2003a). Whatever the method by which the water 

bodies are grouped, the guidance states that it is essential that sufficient representative water 

bodies are monitored within a group to provide an accurate assessment of status for that 

group. Where grouping is not possible, then the latest WFD Reporting Guidance indicates that 

“modelling” (including “statistical analysis”) or “expert judgement” can also be used to assign 

status (European Commission, 2022, p. 51).   

In this study, we adopt a regression modelling approach, which considers the effect of typology 

(directly, and also indirectly by incorporating the effects of lake depth, alkalinity and area) 

alongside other physical features and anthropogenic stressors to yield a statistical model that 

is capable of predicting the status of unmonitored lakes with a quantified level of accuracy and 

confidence. 

1.3 Study aim and objectives 

The aim of this study was to design and implement a methodology for assigning a WFD 

ecological status class to unmonitored Irish lakes.   

The specific objectives were to: 

• establish a conceptual framework for predicting status of unmonitored lakes; 

• set out a methodology and stepwise process to be used in assigning status; 

• predict the status of unmonitored WFD lakes; and 

• provide recommendations for future improvements of the process. 

The project built on existing knowledge gained from previous research, particularly that of 

Wynne and Donohue (2016), which looked at almost exactly the same set of lakes as 

examined in this work and developed a methodology to select donor lakes representative of 

groups of unmonitored lakes. 

1.4 Scope 

It is estimated that there are 12,2171 lakes in Ireland. Of these, 812 are currently identified as 

WFD water bodies in the Republic of Ireland. However, one of these lakes, Lower Erne Kesh, 

lies in Northern Ireland, and was therefore excluded from this study, leaving 811 lakes for 

analysis. Of these, 23 are designated as Heavily Modified Water Bodies (HMWBs), and one 

(Sevenchurches) is designated as an Artificial Water Body (AWB). A total of 224 lakes are 

monitored and 587 are unmonitored and require extrapolation to assign a WFD status class.  

Nutrient enrichment is one of the most important stressors affecting the ecological status of 

lakes. The study therefore focused on predicting the status class of the three quality elements 

that are most sensitive to nutrient enrichment and therefore important drivers of overall 

ecological status: total phosphorus (TP), chlorophyll-a, (a key component of the phytoplankton 

quality element) and macrophytes. In addition, the status class predictions for the three quality 

 
1 As derived from the EPA’s ‘lake segments’ shapefile 
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elements were combined using the one-out, all-out rule to predict an “overall status”2 for each 

unmonitored lake. 

The study used monitoring data collected between 2016 and 2018 to determine the status of 

lakes during this same three-year reporting period. This was the most recent period for which 

concurrent data was available on catchment characteristics, land-use and diffuse and point 

source phosphorus loads. 

1.5 Report Structure 

This report is structured to illustrate the process through which lake status has been 

extrapolated and is laid out as follows: 

• Chapter 2: Conceptual framework, data sources and data processing. This 

chapter summarises the conceptual framework on which the analysis was based. It 

identifies the data sources used in the analysis (details of the steps taken to derive the 

data are provided in the Appendices). It includes a section on lake typology, including 

the approach and analysis undertaken to predict alkalinity concentration and mean 

depth for each lake where this information was not available, allowing a prediction of 

typology category for each unmonitored lake.  

• Chapter 3: Classification of lakes based on anthropogenic stressors and 

physical features. This chapter outlines the methods used to model TP concentration 

and status, chlorophyll-a status and macrophyte status of each unmonitored lake. It 

presents the results of this approach, testing the predicted results against the 

monitored data, mapping the residuals and analysing confidence intervals for 

predictions. It provides an overall status for each unmonitored lake (more detail is 

provided in the Appendices). 

• Chapter 4: Classification of lakes with high uncertainty. This chapter provides a 

framework to assist with expert judgement, where a predicted lake status has a large 

margin of error associated with it. 

• Chapter 5: Discussion and Recommendations. This chapter discusses the different 

model performances, the strength of this approach, and the limitations that are 

associated. It provides recommendations for further research and for improving the 

monitoring programme.    

The report concludes with a series of appendices detailing methods and results. A full set of 

results is included in the Excel workbook which forms an electronic appendix to this report. 

  

 
2 In the context of WFD, “overall status” usually refers to a lake’s overall ecological and chemical status, 

but this study uses the term more narrowly to refer to a lake’s response to nutrient enrichment. 
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2. Data sources and data processing 

2.1 Conceptual model of lake eutrophication 

To aid decisions about which variables were important to include in designing a statistical 

approach to predicting status, a conceptual framework was built based on existing knowledge 

of the mechanisms of lake eutrophication.  

Nutrient enrichment is one of the primary anthropogenic pressures affecting freshwaters 

globally (Schindler, 2006; Smith et al., 2006). The most recent national monitoring programme 

of water quality in Ireland identified nutrient pollution as the principal pressure on water bodies 

(EPA, 2019). The relationship between catchment land-use and nutrient enrichment of water 

bodies has been well documented (OECD, 1982; Johnes and Heathwaite, 1997; Donohue et 

al., 2006).  

The source / pathway / receptor model describes the variables driving the response of a 

receptor (such as a lake and its ecological status) to a source, such as nutrient runoff from 

fertilised soil.  The parameters of this approach are defined as follows: 

• Source: the origin of a potential effect (noting that one source may have several 

pathways and receptors) e.g. an activity such as application of fertiliser to pasture. 

• Pathway: the means by which the effect of the activity could influence a receptor 

e.g. for the example above, runoff pathways that can result in excess fertiliser entering 

the lake. 

• Receptor: the element of the receiving environment that is affected e.g. for the above 

example, nutrient enrichment from fertiliser leading to algal blooms or suppression of 

non-competitive macrophyte species in lakes. 

Different drivers influence the source of pollution and the pathways, influenced by 

hydrogeomorphological factors, through which the pollutant can be transported, attenuated or 

intercepted before delivery to the ultimate receptor, as well as the response of the receptor to 

this pollutant. The aim of the modelling conducted in this study is to predict the overall 

ecological status of each lake, through predicting the status of different quality elements such 

as the TP concentration as well as its the biological response in the form of the macrophyte 

Ecological Quality Ratio (EQR) and the chlorophyll-a (phytoplankton) EQR. The contribution 

of all variables to this outcome is illustrated in Figure 1. 

The Source Load Apportionment Model (SLAM) developed by the EPA is a modelling 

framework that predicts nutrient inputs from different sources within the catchment to receiving 

water bodies (Mockler et al., 2016, Mockler et al., 2017). It uses an export coefficient approach 

to integrate catchment data such as land use, soil type, geology and hydrological connectivity 

with stressor information from point discharges and diffuse sources to enable characterisation 

of source-pathway-receptor relationships. The TP sources considered include point sources 

such as wastewater and industrial discharges, plus diffuse sources such as forestry, pasture, 

arable land, diffuse urban sources and septic tank systems.   

SLAM involves not only calculating the available annual average nutrient loads from each 

sector within the catchment, but accounting for treatment where present (e.g. wastewater) and 

attenuation of the nutrients into the environment, through integrating the hydrogeological 
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pathways for nutrient transport.  The output of the model is a prediction of nutrient load inputs 

to receiving water bodies (identifying the sources) after accounting for attenuation or 

treatment.  This model, which considers both the source and the pathway of nutrients, has 

been run for the 811 lakes included in this study, to predict annual TP loads and their sources 

(more detail on the SLAM model is documented in Appendix 1, Phosphorus loading). The 

contribution of the modelled TP load, derived from the SLAM model, to the model predicting 

overall status is illustrated in Figure 1. 

Several factors need to be considered to convert the modelled TP load into the receiving water 

bodies into a predicted lake TP concentration (directly affecting the lake receptor). A number 

of studies have modelled this, considering factors such as lake depth, area, and flushing rate 

as well as influent concentration (Vollenweider, 1976). Here, these were re-arranged as 

influent TP concentration (estimated using SLAM-modelled TP loads and modelled flows), and 

mean residence time (accounting for lake depth, area and flushing rate (Brett & Benjamin, 

2008)), estimated using modelled flows. The evolution of this calculation, and the final 

calculation used (log transformed, including an interaction factor) is discussed in detail in 

Section 3.2. The contribution of lake depth, area, flow and lake residence time to the model 

predicting overall status is also illustrated in Figure 1. 

Lake residence time influences how much phosphorus settles to the bottom as sediment (with 

a potential then to be cycled internally) and how much phosphorus is exported. Inflowing 

phosphorus contains dissolved reactive phosphorus (taken up by plants and other primary 

producers) and particle-bound phosphorus (which may settle at the lake bottom via the 

process of sedimentation). Phosphorus exits lakes as dissolved reactive phosphorus in 

outflowing rivers, as particulate P in phytoplankton cells that are carried in outflowing rivers, 

and as sediment-bound phosphorus where lake residence times are short.  Lakes with shorter 

hydraulic retention times are likely to have lower relative phosphorus retention in the sediment 

than lakes with slower flushing rates and shorter recovery times (Søndergaard et al., 2001; 

Spears et al., 2006).  Lakes with longer hydraulic retention times have greater phosphorus 

retention and lakes with larger relative depths retain more phosphorus than larger, shallower 

lakes (Kõiv et al., 2011). However, shallow, windswept lakes may be well mixed (McCarthy et 

al., 2001) and thus at greater risk of eutrophication due to re-suspension of bottom sediments.  

Nutrient concentrations increase in lakes across Europe with increasing catchment size and 

decreasing depth and water residence time (Nõges, 2009). This is thought to be as a result of 

the potential for a greater nutrient load from land-use activities, with an increased number of 

pathways for nutrients to enter water bodies (Johnes, 1999; Foy et al., 2003). 

Many other catchment and in-lake processes are important to consider when modelling lake 

ecological status, influencing the sources, transport, attenuation and interception of nutrients 

to each lake. This project was built on the work of Wynne and Donohue (2016), who analysed 

a large number of hydrogeomorphological characteristics at catchment and lake scale, as well 

as land-use characteristics. Some of the hydrogeomorphological and all of the land-use 

characteristics were incorporated into the SLAM model. The remaining 

hydrogeomorphological characteristics were included or excluded based on how they 

performed in Wynne and Donohue’s (2016) models. These variables are described in detail 

in Section 2.3 and their contribution to the model predicting overall status are illustrated in 

Figure 1. 
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Upstream hydrology, through the processing and retention of nutrients in upstream rivers, 

lakes and wetlands, can be an important predictor of in-lake nutrient concentrations (Soranno 

et al., 1999; Venohr et al., 2005; Zhang et al., 2012). Proxies such as upstream lake density, 

and stream density were, therefore, included as candidate predictor variables in the models 

to represent the effect of upstream hydrology, shown in Figure 1. 

Finally, the biological response of a lake, as a receptor, is influenced by not only the nutrient 

input and the characteristics of the catchment that influence the pathways from the source into 

it, but by its typology. In Ireland, this is based on lake alkalinity, mean depth and surface area 

(Free et al., 2006; discussed in detail in Section 2.4). In addition, Taylor et al., (2021) included 

water colour in their analysis of ten Irish lakes and found that algal and macrophyte 

communities in some lakes were possibly limited more by water colour than by nutrient 

availability in the more highly peat-stained waters. They also found that water transparency 

was affected more by water colour than by the turbidity caused by algal cells and other 

suspended matter and suggested that algal and macrophyte production in at least some lakes 

was likely limited by light attenuation rather than nutrient availability. For this reason, colour 

was also included in the chlorophyll-a and macrophyte models (Figure 1). The aim of the 

modelling is to predict not only the TP concentration of the lake as a measure of its ecological 

status, but also its biological response (macrophyte EQR and chlorophyll-a (phytoplankton) 

EQR). The contribution of these typological variables to the overall model, and overall 

ecological status prediction is illustrated in Figure 1. 
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Figure 1: Flow chart summarising the variables used to predict the overall ecological status of unmonitored lakes.  

For clarity the arrows only denote the factors retained in the final models. 
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2.2 WFD monitoring data 

Of the 811 lakes designated as WFD water bodies in Ireland that are the focus of this study, 

224 were directly monitored in the period between 2016 and 2018 under the EPA’s national 

monitoring programme. TP and chlorophyll-a were sampled at all 224 monitored lakes, and 

macrophytes were monitored at all but three (Corconnelly, Gorman and Cummernamuck). 

The data from this 2016-2018 monitoring period form the basis of the models described in this 

report.   

Figure 2 illustrates the ecological status of the different quality elements, showing the 

ecological status of biological quality elements (macrophyte and chlorophyll-a), and physico-

chemical quality elements (TP) as well as the overall status for the three elements, which 

defaults to the worst status of the three elements. There are clear geographic patterns in the 

distribution of status, with the majority of High and Good status lakes situated along the west 

coast of Ireland, particularly in the more remote locations of the north-west, west and south-

west. The majority of lakes with an ecological status of Moderate or worse are located in the 

north-east, especially in Cavan and Monaghan.   

The quality element(s) driving the overall (worst) status is shown in Figure 3. The status of 

macrophytes and/or TP appear to drive status for most lakes, with the exception of the south-

west, where chlorophyll-a appears to be driving the status of many lakes.  
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Figure 2: Maps of monitored lakes showing overall (worst) ecological status and the 

corresponding ecological status of the different quality elements  
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Figure 3:  Map displaying the quality element(s) driving overall (worst) status in each of 224 

monitored lakes  

(TP = total phosphorus, chl-a = chlorophyll-a and mac = macrophytes) 
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2.3 Lake and catchment characteristics  

A variety of relevant variables, listed in Table 1, were assembled to describe the 

characteristics of each lake and its upstream catchment. Details of how these variables were 

derived are provided in Appendix 1. 

This exercise took as its starting point the dataset of physical and hydromorphological 

variables derived by Wynne and Donohue (2016) for 769 lakes. Data gaps were then filled 

using a combination of geospatial (GIS) analysis and statistical modelling. These analyses 

used: the WFD lake water bodies Cycle 3 layer, lake segments layer (including a total of 

12,217 segments), and nested catchments layer (v2), from the EPA’s catchment products 

geodatabase; and the river segments layer (RivNetRoutes; a river network layer with 102,108 

river segments delineated from the OSI Discovery Series source) from the EPA’s GeoPortal 

(Environmental Protection Agency, Ireland (EPA) Geoportal).  

These datasets were downloaded and used in the geospatial analysis to derive hydrological 

and morphological characteristics to describe how water and pollutants might be transported 

and/or processed in these systems. All geospatial analyses were done using QGIS 3.24 and 

all statistical modelling used R 3.6.1 (R Core Team, 2022). 

 

Table 1: Geographic, catchment and lake variables used in this study 

Variable (units) Description and derivation Relevance References 

 

Geographic Variables 

Easting, 

Northing  

Lake centroid location (projected in 

TM65 / Irish National Grid) 

Used to account for 

large-scale geographic 

variation among lakes.  

 

 

Catchment Variables 

Catchment area 

(km2) 

The catchment area upstream of the 

lake outflow – i.e. the total land area 

draining to the lake. Derived from the 

2022 catchment products geodatabase 

provided by the EPA, and using the 

nested catchments v2 layer. 

Larger catchments are 

likely to have more 

heterogenous land 

cover and land uses. 

Used to calculate flow 

from each lake. 

Foy et al. 

(2003); 

Nõges 

(2009) 

Mean catchment 

slope (°) 

The average slope across the 

upstream catchment. Calculated for 

759 lakes by Wynne & Donohue 

(2016), who used geospatial analysis 

using a 5 m DTM and the nested 

catchments v2 layer, and predicted for 

the remaining 52 lakes using a 

statistical model. 

Catchment slope may 

influence the 

hydrology within the 

catchment, including 

run-off potential and 

the importance of 

surface water 

pathways.  

Sobek et al. 

(2011); 

Greene et 

al. (2013) 

https://gis.epa.ie/Home
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Variable (units) Description and derivation Relevance References 

Range in slope 

in near lake 

buffer (°) 

The range in slope within 50 m of the 

lake shore. Calculated for 759 lakes by 

Wynne and Donohue (2016), who 

used geospatial analysis using a 5 m 

DTM, a 50 m buffer around each WFD 

lake, and the previous version of the 

nested catchments layer. Predicted for 

the remaining 52 lakes using a 

statistical model. 

An indicator of the 

possible steepness of 

the lake littoral zone, 

and a predictor of lake 

depth. 

Sobek et al. 

(2011) 

Density of 

upstream lakes 

(km2/km2) 

The proportion of the upstream 

catchment area that is lakes. Wynne 

and Donohue (2016) calculated this 

variable as the total area (km2) of all 

lake segments (using the lake 

segments layer) upstream of the lake 

and within its nested catchment, and 

divided this by the lake’s catchment 

area (km2). Using the nested 

catchments v2 layer, the same 

methodology was adopted to estimate 

the density of upstream lakes for all 

811 lakes. 

Proxy for in-lake 

retention of nutrients 

as they are 

transported through 

the upstream 

catchment.  

Kratz et al. 

(1997); 

Zhang et al. 

(2012) 

Stream density 

(km/km2)  

The density of streams in the upstream 

catchment. Wynne and Donohue 

(2016) calculated this variable as the 

total length (km) of all river lines (using 

the RivNetRoutes layer) upstream of 

the lake and within its nested 

catchment, and divided this by the 

lake’s catchment area (km2). Using the 

nested catchments v2 layer, the same 

methodology was adopted to estimate 

stream density for the 53 lakes that 

were not included in the research by 

Wynne and Donohue (2016). 

Indicative of the 

importance of surface 

water pathways. Proxy 

for in-stream retention 

of nutrients as they are 

transported through 

the upstream 

catchment. 

Venohr et al. 

(2005) 

Limestone (%) The % of limestone bedrock within the 

upstream catchment. Wynne and 

Donohue (2016) used the intersection 

tool in ArcGIS 10.1 to estimate the % 

of limestone bedrock (utilising the GSI 

hydrostatic rock units layer) in each 

nested catchment from the previous 

version of the nested catchments 

layer. The same methodology was 

adopted to estimate % cover of 

limestone bedrock for all 811 lakes, but 

with the nested catchments v2 layer. 

Predictor of alkalinity 

and colour, and a 

strong indicator of 

groundwater 

interactions. 

Hem (1985); 

Meybeck et 

al.  (1996); 

Tedd et al. 

(2014) 
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Variable (units) Description and derivation Relevance References 

Peat (%) The % of peaty subsoils within the 

upstream catchment. Wynne and 

Donohue (2016) used the intersection 

tool in ArcGIS 10.1 to estimate the % 

of peaty subsoils (utilising the 

Subsoils.ie layer) in each nested 

catchment from the previous version of 

the nested catchments layer. The 

same methodology was adopted to 

estimate % cover of peat subsoil for all 

811 lakes, but with the nested 

catchments v2 layer. 

Influences run-off 

potential. Also a 

predictor of alkalinity 

and colour. 

Hem (1985); 

Meybeck et 

al. (1996) 

 

Karst (%) The % of karst aquifers within the 

upstream catchment. Wynne and 

Donohue (2016) used the intersection 

tool in ArcGIS 10.1 to estimate the 

percentage of karst aquifers (utilising 

the groundwater resources bedrock 

aquifer layer) in each nested 

catchment from the previous version of 

the nested catchments layer. The 

same methodology was adopted to 

estimate % cover of karst aquifers for 

all 811 lakes, but with the nested 

catchments v2 layer. 

Influences flow 

pathways. Catchment 

watersheds can be 

difficult to delineate in 

karst areas, leading to 

potential errors in flow 

estimation. 

 

TP load 

(kg/ha/yr) 

Estimated total annual load of TP from 

the upstream catchment as estimated 

by SLAM v303.  

Estimate of external 

nutrient pressure 

acting on each lake 

from point and diffuse 

sources. 

Mockler et 

al. (2017) 

Runoff 

(m3/km2/yr) 

Annual mean naturalised runoff from 

the upstream catchment, estimated for 

667 lakes using the QUBE model and 

predicted using a statistical model for 

the remaining 144 lakes. 

Runoff influences the 

rate of TP transport.  

Bree (2018) 

Flow (m3/yr) The annual mean discharge at the lake 

outflow, calculated by multiplying the 

modelled annual runoff by the lake 

catchment area. 

Influences TP dilution 

and lake residence 

time. 

 

 

Lake Variables 

Alkalinity (mg/l) Long-term (2007-2015) mean 

alkalinity, calculated for 223 lakes 

using EPA sample data, and predicted 

using a statistical model for the 

remaining 588 lakes. 

One of the most 

important factors in 

explaining natural 

variation in lake 

biological 

communities. 

Free et al. 

(2006) 
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Variable (units) Description and derivation Relevance References 

Lake area (km2) Lake area, derived from the WFD lake 

water bodies layer. 

Lake area, and its 

relationship to lake 

volume can impact 

cycling of nutrients 

through, increased 

wind and wave action, 

varying stratification 

regimes and dilution. 

Håkanson 

(2005) 

Depth (m) Mean lake depth, based on EPA 

bathymetry data for 584 lakes, and 

predicted using a statistical model for 

the remaining 227 lakes. 

Used to calculate lake 

volume, and part of the 

lake typology. As is the 

case with lake area, 

depth impacts the 

processing of nutrients 

once they reach the 

lake. One of three 

factors that determine 

WFD typology. 

Håkanson 

(2005) 

Influent TP 

concentration 

(mg/l) 

The annual flow-weighted mean TP 

concentration in the water flowing into 

each lake, calculated by dividing the 

annual TP load (kg/yr, converted to 

mg/yr) by the annual flow (m3/yr, 

converted to l/yr). 

The primary external 

control on in-lake 

phosphorus 

concentration. 

Vollenweider

(1976); Brett 

and 

Benjamin 

(2008) 

Residence time 

(years) 

The average time taken for water to 

pass through the lake, calculated by 

dividing the estimated lake volume 

(m3) by the estimated annual flow at 

the lake outlet (m3/yr). 

Influences how much 

of the influent 

phosphorus is retained 

within the lake in bed 

sediments. 

Vollenweider

(1976); Brett 

and 

Benjamin 

(2008) 

Colour (Hazen) Mean (2016-2018) lake colour based 

on EPA monitoring data for 224 lakes, 

and predicted using a statistical model 

for the remaining 587 lakes. 

 

 

Affects light 

penetration, which can 

potentially influence 

community structure of 

phytoplankton and 

submerged 

macrophytes. 

Alahuhta et 

al. (2013); 

Taylor et al. 

(2021) 

Shoreline 

development 

index (SDI) 

The ratio of the lake perimeter to the 

circumference of a circle of area equal 

to the surface area of the lake. Larger 

values indicate more irregular shore 

outlines. Calculated for 759 lakes by 

Wynne and Donohue (2016) and 

predicted using a statistical model for 

the remaining 52 lakes.  

The extent of littoral 

habitat increases with 

an increasing SDI. 

Potential predictor of 

lake depth. 

Shilland et 

al. (2009); 

Wynne and 

Donohue 

(2016) 
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2.4 WFD Typology 

The WFD requires that surface water bodies be differentiated according to type, so that 

changes in biological indicator communities would detect changes in pressure, rather than 

reflecting natural variation (European Commission, 2003a). Natural variation in biological 

communities occurs along hydrogeomorphological gradients, and thus water body types must 

characterise elements of the water body’s natural hydrogeomorphology at reference condition 

to reflect this natural variation (European Commission, 2003b).  

The WFD typology of lakes in Ireland is based on Free et al. (2006), who showed that lake 

alkalinity, mean depth and surface area were the most important factors explaining natural 

variation in lake biological communities (Table 2).  

Table 2: WFD typology for Irish lakes 

Parameter  Boundaries 

Alkalinity (mg/l CaCO3)  <20  20-100  >100  

Mean depth (m)  <4  >4  <4  >4  <4  >4  

Area (ha)  <50 >50 <50 >50 <50 >50 <50 >50 <50 >50 <50 >50 

Type  1 2 3 4 5 6 7 8 9 10 11 12 

 

For this project, it was important to know the typology of all lakes so that any influences of 

alkalinity, depth and area could be taken into account when predicting the status. Surface area 

is easily derived from maps and is therefore known for every lake, but alkalinity and depth 

have only been measured for a fraction of WFD lakes, and therefore statistical regression 

models were developed to predict alkalinity and depth for lakes with missing data. 

Alkalinity measurements (mg/l) were available for 223 monitored lakes from the EPA’s 

AQUARIUS database. The measurements for the monitored lakes were averaged over a 9-

year period (2007-2015) to give an estimate of long-term mean alkalinity for each lake. Using 

these data, a GAM regression model was developed to understand and quantify the causes 

of variation in alkalinity from lake to lake. Alkalinity was modelled as a function of the following 

predictor variables: 

• % peat (an indicator of the extent of peaty spoils in the upstream catchment); 

• % limestone (an indicator of the geology of the upstream catchment); and 

• easting/northing (to account for other sources of spatial variation). 

%peat and %limestone were chosen as candidate predictors because Wynne and Donohue 

(2016) used them successfully to predict the alkalinity category of lakes using a regression 

tree model. The model was used to predict alkalinity (in mg/l) for the 588 unmonitored lakes. 

The predictions were then converted to categories (low, moderate, high) using the boundaries 

in Table 2. The full method used to model alkalinity is described in Appendix 1.   

Mean depth estimates (in m) were provided by the EPA for a total of 584 WFD lakes; data for 

204 of these lakes were derived from the EPA’s 2013 monitored bathymetry database and the 

remaining 380 values were derived from the EPA’s typology data update in 2016. Using these 
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data, a GAM regression model was developed to understand and quantify the causes of 

variation in mean depth from lake to lake. Specifically, mean depth was modelled as a function 

of the following predictor variables: 

• lake area (log10-transformed); 

• range in slope (50m buffer; log10-transformed); and 

• shoreline development index (SDI). 

 

The approach followed is an advance on the previous study (Wynne and Donohue, 2016), 

which was unable to develop a sufficiently accurate model for lake depth. At that time, 

bathymetry data was unavailable, and their model was based on maximum depths recorded 

using a handheld depth sounder for 201 lakes.   

The final model, which explained 41.4% of the variation among lakes, was used to predict 

mean depth (m) for the remaining 227 lakes. The predictions were then converted to 

categories (shallow, deep) using the boundaries in Table 2. The full method used to model 

depth is described in Appendix 1.   

Using a combination of measured and predicted data, each of the 811 WFD lakes was 

assigned to a typology category (Figure 4). Small, shallow, low alkalinity lakes are the most 

numerous, accounting for ~32% of all WFD lakes. The EPA’s lake monitoring programme 

includes at least 10 lakes in each of the 12 typology groups, although for every alkalinity/depth 

group a higher proportion of large lakes are monitored than small lakes (that is, small lakes 

are under-represented in the monitoring programme). 

 
Figure 4: Number of lakes within each lake typology category 
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Figure 5 shows the geographic distribution of the different lake types. There is a clear 

geographic pattern in the distribution of the different lake alkalinity categories. Low alkalinity 

lakes are mostly found along the west coast of the country, with the largest proportions in 

Donegal, Galway and Kerry.  Deeper low alkalinity lakes (both large and small) are most 

frequently found in Kerry and Donegal with a number also in Wicklow, whereas there are more 

small shallow low alkalinity lakes in Connemara (Galway), as well as in Donegal.  Most of the 

moderate and high alkalinity lakes are found in the midlands, with a high concentration of small 

shallow lakes around the border in Monaghan and Cavan, and significant numbers of all types 

of moderate and high alkalinity lakes in Leitrim, Roscommon, Mayo and Clare.  
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Figure 5: Map of WFD typology of all 811 lakes 
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3. Classification of lakes based on anthropogenic stressors 

and physical features 

 

 

3.1 Approach 

This section describes the approach used to develop statistical models of TP concentration, 

chlorophyll-a EQR and macrophyte EQR, and then apply those models to predict the status 

of unmonitored lakes. 

Based on the one-out-all-out principle, Wynne and Donohue (2016) focused on the worst-

performing quality element for each monitored lake and used a combination of k-means 

clustering and hierarchical clustering to group lakes according to their hydrogeomorphological 

characteristics. Whilst the approach was successful in identifying donor lakes that could be 

used to infer the WFD status of similar unmonitored lakes, it did not attempt to differentiate 

the responses of TP concentration, chlorophyll-a and macrophytes to anthropogenic 

stressors, and was unable to provide clear insight into the factors or processes driving 

variation in WFD status among lakes. 

This study builds on the work of Wynne and Donohue (2016) in two main ways. First, to better 

understand the underlying mechanisms of nutrient enrichment and eutrophication in Irish 

lakes, we developed separate predictive models for each of the three quality elements. 

Moreover, to represent the chain of causation leading to impacts on biological receptors, 

predictions from the TP model were used as an input to the chlorophyll-a and macrophyte 

models, and predictions from the chlorophyll-a model were used as an input to the macrophyte 

model. Second, statistical regression models were used in preference to cluster analysis 

techniques to quantify causal relationships between nutrient enrichment pressure, lake water 

quality (TP concentration) and biological community composition (chlorophyll-a and 

macrophyte EQRs). 

For each quality element in turn, spatial variation among monitored lakes was analysed using 

Generalised Additive Models (GAMs). GAMs are an extension of standard linear regression 

models that allow relationships between the explanatory variables and the response to be 

described by smooth curves (Wood, 2017). By flexibly describing non-linear relationships non-

parametrically, without making a priori assumptions about the form of the relationship, GAMs 

offer a middle ground between simple linear models and complex machine-learning 

techniques, which has led to them being widely used to model complex ecological systems 

(Pedersen et al., 2019).  

For each model, the conceptual model of lake eutrophication was used to guide the selection 

of candidate predictor variables that had a plausible, scientific basis for inclusion in the model. 

Candidate variables were screened to identify and eliminate any that were strongly correlated 

or had high concurvity (where one variable was a smooth function of another). Continuous 

predictors were modelled as smooth functions using thin plate regression splines, with the 

degree of smoothing optimised using restricted maximum likelihood (REML; Wood, 2011). 

Two-dimensional isotropic smooths were used to model geographic variation (i.e. 

easting/northings), and a tensor product smooth was used to model interactions between 

variables measured on different scales.  
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A full model containing all candidate predictor variables was simplified using backward model 

selection to yield a final, parsimonious model containing only the most useful predictor 

variables. Model selection was based on the Bayesian Information Criterion (BIC) rather than 

the Akaike Information Criterion (AIC) because it penalises model terms more heavily and 

because simpler models tend to be more transferable and give better predictions when applied 

to new locations outside the training set (Millidine et al., 2016; Jackson et al., 2017). The model 

with the lowest BIC was selected as the final model. The accuracy of the final models was 

quantified by comparing the predicted and measured status classes for the 224 monitored 

lakes in the calibration dataset. 

The final models were used to predict TP concentration, chlorophyll-a EQR and macrophyte 

EQR for the 587 unmonitored lakes, plus macrophyte EQR for the three monitored lakes that 

lacked macrophyte sample data. These predictions were then converted to WFD status 

classes as shown in Table 3 and, in turn, used to assess whether or not each lake was 

achieving GES. The degree of confidence in the classification results was quantified using 

prediction intervals and summarised in the form of certainty bands. 

Finally, the status class predictions for the three quality elements were combined using the 

one-out, all-out rule to predict the overall status of each unmonitored lake. 

All analyses were performed in R 3.6.1 (R Core Team, 2022), and the GAM models were fitted 

using the gam function from the mgcv package (Wood, 2022). 

 

Table 3: WFD standards and criteria for TP, chlorophyll-a and macrophytes 

WFD standard 
TP concentration 

(mg/l)* 

Chlorophyll-a   

(normalised EQR) 

Macrophytes  

(normalised EQR) 

High 0.010 0.8 0.8 

Good 0.025 0.6 0.6 

Moderate 0.050 0.4 0.4 

Poor 0.100 0.2 0.2 

*From EPA (2019) 
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3.2 TP status 

Numerous studies have attempted to determine the factors that exert the greatest impact on 

in-lake TP concentrations, dating back to the seminal work of Vollenweider (1976), who 

developed the following mathematical model of phosphorus loading: 

𝑇𝑃𝑙𝑎𝑘𝑒 =
𝐿

𝐷(𝜌 +  𝜎)
 (eqn. 1) 

where 𝑇𝑃𝑙𝑎𝑘𝑒 = the TP concentration in the lake and its outflow (mg m-3 or μg L-1), 𝐿 = the areal 

TP loading rate (mg TP m-2 year-1), 𝐷 = mean lake depth (m), 𝜌 = lake flushing rate (year-1) 

and 𝜎 = first-order rate coefficient for TP loss from the lake (year-1). Vollenweider’s model 

assumes that the lake is well mixed and at steady state, so that the TP concentration 

throughout the lake and in the outlet stream can be characterized by a single value. It also 

assumes that TP can be lost from the lake in only two ways: via advection (i.e. in the outlet 

stream) or via one or more first-order processes occurring within the lake (principally 

sedimentation of phosphorus-containing particles in the lake). 

Brett & Benjamin (2008) showed that eqn. 1 can be re-arranged as: 

𝑇𝑃𝑙𝑎𝑘𝑒 =
𝑇𝑃𝑖𝑛

1 + 𝜎𝜏
 (eqn. 2) 

where 𝑇𝑃𝑖𝑛 = the flow-weighted TP influent concentration (mg m-3 or μg L-1) and 𝜏 = mean 

hydraulic residence time (years). As has been pointed out by several authors, eqn. 2 is 

identical to the classic result from chemical engineering for the relationship between the inlet 

and outlet concentrations of a substance that undergoes a first-order decay reaction in a 

continuous flow stirred tank reactor (Brett & Benjamin, 2008). Usefully, eqn. 2 expresses the 

in-lake concentration (as measured by the EPA’s monitoring programme) as a function of the 

influent concentration (as estimated using SLAM-modelled TP loads and QUBE-modelled 

flows), and the lake’s residence time (as estimated using QUBE-modelled flows); only the loss 

coefficient (𝜎) cannot be estimated directly for Irish lakes. 

However, taking logarithms of eqn 2. gives: 

log(𝑇𝑃𝑙𝑎𝑘𝑒) = log(𝑇𝑃𝑖𝑛) − log(1 + 𝜎𝜏) (eqn. 3) 

and by furthermore assuming that the loss coefficient (𝜎) is either a constant or a function of 

the lake’s hydraulic residence time (𝜏) (Larsen & Mercier 1976; Brett & Benjamin, 2008), the 

in-lake TP concentration can be modelled using just influent concentration and residence time. 

Using estimates of mean TP concentration (2016-18) available for 224 monitored lakes, TP 

was therefore modelled as a function of the modelled influent TP concentration (log10-

transformed) and residence time (also log10-transformed). An interaction between these two 

predictors (as a 2D smooth) was also included. In addition: 

• typology was included as a main effect to account for possible differences in nutrient 

dynamics and TP concentrations among lake types (main effect only, as there were 
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insufficient data to test for a three-way interaction between influent TP concentration, 

residence time and typology); 

• as an alternative to typology, alkalinity and mean depth (log10-transformed) were 

included as main effects to account for possible TP gradients across lake types;   

• stream density (log10-transformed) and upstream lake density (log10-transformed) 

were included as proxies for nutrient processing and retention in streams and lakes in 

the upstream catchment (processes not accounted for in the SLAM model); and 

• easting and northing were included as a 2D smooth to account for other sources of 

spatial variation. 

There were insufficient data to test whether and how the interacting effects of influent TP 

concentration and residence time varied among lake types. 

TP concentration was log10 transformed to satisfy the model’s assumptions of normally 

distributed errors and heterogeneous variables (see Appendix 2 for residuals plots), and 

heavily skewed predictor variables were log10-transformed to reduce the influence of outliers. 

Backward model selection using BIC was used to retain only the most relevant predictor 

variables. For TP concentration, the variables retained in the final model were: 

• modelled influent TP concentration; 

• residence time;  

• modelled influent TP concentration x residence time interaction; and 

• easting/northing. 

Typology, alkalinity and depth were not retained in the final model. This was not unexpected, 

as depth was indirectly accounted for via residence time, and there is no clear mechanism by 

which alkalinity directly affects in-lake TP concentration. The effects of the predictors in the 

final model were therefore common across all lake types.  

Stream density and upstream lake density were also dropped from the model, a result 

suggesting either that nutrient retention is relatively unimportant, or that these variables are 

poor proxies for upstream nutrient retention.     

Overall, the final model explained 69.1% of the variation in TP concentration (Figure 6; 

Appendix 2).  
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Figure 6: Predicted vs measured TP for the 224 monitored lakes 
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Figure 7 illustrates the effect influent concentration and residence time on in-lake TP 

concentration whilst holding easting/northing constant. The five curves represent lakes with 

residence times of 1 day, 1 week, 1 month, 1 year and 5 years (only seven lakes had an 

estimated residence time of less than 1 day, and only four lakes had an estimated residence 

time more than 5 years; see Appendix 1 for a full distribution). Overall, in-lake TP 

concentrations increased with influent TP concentration, but the effect of external nutrient 

loading on lake water quality was strongly moderated by residence time. Specifically, lakes 

with short residence times (< 1 month) had TP concentrations that were strongly driven by the 

influent TP concentration, whereas lakes with long residence times (> 1 year) were predicted 

to be relatively insensitive to TP inputs. Although the flat purple line in Figure 7 implies that 

increasing (or decreasing) TP inputs would have no effect on TP concentration in lakes with 

very long residence times (ca. 5 years), there are very few such lakes in the calibration dataset, 

so there is considerable uncertainty in this result; in fact, the confidence intervals around the 

purple line mean it is not possible to say whether the relationship between influent TP 

concentration and in-lake TP concentration is positive, negative or flat. 

 

Figure 7: Partial effects plot showing the effect of influent concentration and residence time (1 

day, 1 week, 1 month, 1 year and 5 years) on in-lake TP concentration 
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Figure 8 illustrates the geographic variation in measured TP concentration after accounting 

for the effect of influent TP concentration and residence time. All else being equal, lakes in 

Cavan and Monaghan (and to a lesser extent southern Cork) had higher in-lake TP 

concentrations than those in the western coastal counties of Donegal, Mayo, Galway and 

Kerry. The reason for this marked geographic variation could reflect spatial differences in soil 

geochemistry or historically high phosphorus inputs to lakes in the more intensively farmed 

regions of the country, or could be due to the under-estimation by the SLAM model of TP loads 

from some agricultural sources. Regardless of the cause, the final TP model accounts for this 

unexplained geographic variation in its TP predictions for each lake. 

 

 

Figure 8: Partial effects plot showing the effect of easting/northing on TP concentration in 

monitored lakes  
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The predictive performance of the model was assessed by comparing the measured status 

class of the 224 monitored lakes with the class predicted by the final model (Figure 9). Overall, 

the model predicted the correct TP status class with 61% accuracy and predicted with 89% 

accuracy whether or not a lake was achieving Good status for TP. There was a slight tendency 

to over-predict status more than under-predict, particularly for more impacted lakes, but in only 

8 out of 224 cases (3.5%) was the model prediction out by more than 1 status class. Appendix 

2 lists the lakes with the largest positive and negative residuals (i.e. those where the TP 

concentration was proportionally under- and over-estimated the most). 

 

 

Figure 9: Matrix of measured and predicted TP status class for the 224 monitored lakes 

 

Inspection of the model residuals showed that the model was equally good at predicting TP 

concentration for lakes in karst and non-karst catchments, for large and small lakes, and for 

lakes in each of the 12 typology groups (see Appendix 2 for details). This confirms that the 

model has general applicability and does not appear to be biased for any particular type of 

lake. 

The final model was used to predict TP concentration for the 587 unmonitored lakes. 82% of 

these were predicted to be achieving Good status for TP, compared with 71% of monitored 

lakes (Figure 10). Overall, low alkalinity lakes had the highest proportion at High or Good 

status, and moderate alkalinity shallow lakes had the lowest proportion at GES (Figure 11). 

Figure 12 maps measured and predicted TP status for all 811 lakes and reveals strong 

geographic variation in TP status which broadly reflects regional variation in the intensity of 

land use and level of TP loading from point and diffuse sources  
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Figure 10: Summary of TP status for monitored and unmonitored lakes   

 

 

Figure 11: Summary of TP status for all 811 lakes, by WFD typology   
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Figure 12: Map of measured and predicted TP status for all 811 lakes 
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3.3 Chlorophyll-a status 

Chlorophyll-a EQR was used as the response variable in preference to chlorophyll-a 

concentration because it accounts for natural variation in chlorophyll-a concentration among 

lake types, and therefore provides a standardised metric that translates directly into a WFD 

status class. 

Using estimates of mean EQR (2016-18) available for 224 monitored lakes, chlorophyll-a EQR 

was modelled as a function of the following predictor variables: 

• TP concentration (log10-transformed) to represent annual mean nutrient 

concentrations within the lake; 

• typology was included as a main effect to account for possible differences in status 

among lake types; 

• as an alternative to typology, lake area (log10-transformed), alkalinity and mean 

depth (log10-transformed) were included as main effects to account for natural 

gradients in chlorophyll-a EQR across lake types;  alkalinity was also included as an 

interaction with TP concentration, to test for differential sensitivity of chlorophyll-a to 

nutrient enrichment;  

• residence time (log10-transformed) was included to account for possible effects on 

nutrient processing and nutrient uptake; 

• colour (log10-transformed, as a main effect and interaction with TP concentration) 

was included to account for possible effects of light limitation (Taylor et al., 2021); and 

• easting and northing were included as a 2D smooth to account for other sources of 

spatial variation. 

Backward model selection using BIC was used to retain only the most relevant predictor 

variables. For chlorophyll-a EQR, the variables retained in the final model were: 

• TP concentration; 

• alkalinity;  

• TP concentration x alkalinity interaction; and  

• colour. 

Typology, area, depth, residence time, and easting/northing, were not retained in the final 

model, so the effects of the above predictors were common across lakes of different areas 

and depths. Notably, alkalinity was a better predictor when fitted as a continuous term than 

when fitted as a categorical predictor (low, moderate, high). 

Overall, the final model explained 69% of the variation in chlorophyll-a EQR (Figure 13; 

Appendix 3 ). As shown in Figure 13, the model predicted chlorophyll-a EQR well for lakes 

with a measured status of Good or High, but tended to over-predict chlorophyll-a EQR for 

lakes with a measured status of Moderate or worse. 
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Figure 13: Predicted vs measured chlorophyll-a EQR for the 224 monitored lakes 

 

Figure 14 illustrates the interacting effects of TP concentration and alkalinity on predicted 

chlorophyll-a EQR (whilst holding colour constant at a mean value of 36 mg/l). As expected, 

there was a strong negative relationship between TP concentration and chlorophyll-a EQR, 

which was approximately linear on a log10-scale. The slope of this relationship varied 

depending on the alkalinity of the lake, being slightly steeper for very high (>200 mg/l) and 

moderate (ca. 50 mg/l) lakes, and less steep for high (100-150 mg/l lakes). Thus the TP 

concentration and alkalinity interaction was relatively weak, and its inclusion in the model 

improved the accuracy of the model predictions by only 1%. 

After controlling for the effects of TP concentration and alkalinity, there was a weak positive 

relationship between chlorophyll-a EQR and colour (Figure 15).  
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(a) 

 

(b) 

 

Figure 14: Contour plot (a) and model predictions (b) showing the effect of TP concentration 

and alkalinity on chlorophyll-a EQR 
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Figure 15: Partial effects plot showing the effect of colour on chlorophyll-a EQR 

 

The predictive performance of the model was assessed by comparing the measured status 

class of the 224 monitored lakes with the class predicted by the final model (Figure 16). 

Overall, the model predicted the correct WFD status class with 69% accuracy and predicted 

with 89% accuracy whether or not a lake was achieving Good status for chlorophyll-a. Over- 

and under-estimates were roughly evenly balanced, but there was a tendency to over-predict 

the status of more impacted lakes. In only 4 out of 224 cases (1.8%) was the model prediction 

out by more than 1 status class. Appendix 3 lists the lakes with the largest positive and 

negative residuals (i.e. those where the chlorophyll-a EQR was under- and over-estimated the 

most). 
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Figure 16: Matrix of measured and predicted chlorophyll-a EQR status class for the 224 

monitored lakes 

 

 

Inspection of the model residuals showed that the model was equally good at predicting 

chlorophyll-a EQR for lakes in karst and non-karst catchments for large and small lakes, and 

for lakes in each of the 12 typology groups (see Appendix 3 for details). This confirms that the 

model has general applicability and does not appear to be biased for any particular type of 

lake. 

The final model was used to predict chlorophyll-a EQR for the 587 unmonitored lakes. 90% of 

these were predicted to be achieving Good status for chlorophyll-a, compared with 83% of 

monitored lakes (Figure 17). Overall, low alkalinity lakes had the highest proportion at High or 

Good status, and small, shallow lakes of moderate-to-high alkalinity had the lowest proportion 

(Figure 18). 

Figure 19 maps measured and predicted chlorophyll-a status for all 811 lakes and reveals 

strong geographic variation in status which broadly reflects regional variation in the intensity 

of land use and level of TP loading from point and diffuse sources.  
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Figure 17: Summary of chlorophyll-a status for monitored and unmonitored lakes   

 

 

Figure 18: Summary of chlorophyll-a status for all 811 lakes, by WFD typology   
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Figure 19: Map of measured and predicted chlorophyll-a status for all 811 lakes 
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3.4 Macrophyte status 

Macrophyte EQR was used as the response variable to provide a standardised metric that 

translates directly into a WFD status class. 

Using the measured EQR (2016-18) available for 221 monitored lakes3, macrophyte EQR was 

modelled as a function of the following predictor variables: 

• TP concentration (log10-transformed) to represent annual mean nutrient 

concentrations within the lake; 

• typology was included as a main effect to account for possible differences in status 

among lake types; 

• as an alternative to typology, lake area (log10-transformed), alkalinity and mean 

depth (log10-transformed) were included as main effects to account for natural 

gradients in macrophyte EQR across lake types;   

• alkalinity was also included as an interaction with TP concentration, to test for 

differential sensitivity of macrophyte communities to nutrient enrichment;  

• residence time (log10-transformed) was included to account for possible moderating 

effects on nutrient processing and nutrient uptake; 

• colour (log10-transformed, as a main effect and as an interaction with TP 

concentration) was included to account for possible effects of light limitation (Taylor 

et al., 2021);  

• chlorophyll-a EQR was included to represent the potential limiting effect of 

phytoplankton on macrophyte growth; and 

• easting and northing were included as a 2D smooth to account for other sources of 

spatial variation. 

Backward model selection using BIC was used to retain only the most relevant predictor 

variables. For macrophyte EQR, the variables retained in the final model were: 

• TP concentration; 

• colour;  

• alkalinity; and 

• easting/northing. 

Typology, area, depth, and residence time were not retained in the final model, so the effects 

of the above predictors were common across lakes of different areas and depths. Notably, 

alkalinity was a better predictor when fitted as a continuous term than when fitted as a 

categorical predictor (low, moderate, high). There was no evidence that the relationship 

between TP concentration and macrophyte EQR was moderated by alkalinity or colour, nor 

that the chlorophyll-a status of the lake influenced macrophyte status. 

Overall, the final model explained 78.2% of the variation in macrophyte EQR (Appendix 4 ). 

As shown in Figure 20, the model had a tendency to under-predict macrophyte EQR for lakes 

with a measured status of Good or High, and to over-predict for lakes with a measured status 

of Poor or Bad. 

 
3 Three lakes (Corconnelly, Cummernamuck and Gorman) were monitored for TP and chlorophyll-a but not 

macrophytes. 
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Figure 20: Predicted vs measured macrophyte EQR for the 221 monitored lakes 

 

Figure 21 illustrates the relationship between macrophyte EQR and each variable whilst 

holding the other retained predictor variables constant at their mean values. As expected, TP 

concentration had the strongest influence on macrophyte EQR, with the negative relationship 

being roughly linear on a log10 scale. In contrast to chlorophyll-a, colour had a negative effect 

on macrophyte EQR, suggesting that macrophyte growth may be reduced in lakes where high 

colour limits light penetration. Finally, the relationship between macrophyte EQR and alkalinity 

was weak and unimodal, with the lowest EQR predicted for lakes with an alkalinity of ca. 70 

mg/l.  
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Figure 21: Partial effects plots showing the effect of each variable on macrophyte EQR 

 

Figure 22 illustrates the geographic variation in macrophyte EQR after accounting for the 

effects of in-lake TP concentration, colour and alkalinity. All else being equal, lakes in the 

western coastal areas of Donegal, Galway and Cork had higher predicted macrophyte EQRs 

than lakes in inland and eastern areas, and lakes in Monaghan had particularly low predicted 

EQRs. The reason for this marked geographic variation is unclear, but could possibly reflect 

spatial variation in historical nutrient inputs and the extent of internal nutrient loading from lake 

sediments. Regardless of the mechanism, the final macrophytes model accounts for this 

unexplained geographic variation in its EQR predictions for each lake.  
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Figure 22: Partial effects plot showing the effect of easting/northing on macrophyte EQR in 

monitored lakes 

 

The predictive performance of the model was assessed by comparing the measured status 

class of the 221 monitored lakes with the class predicted by the final model (Figure 23). 

Overall, the model predicted the correct WFD status class with 64% accuracy and predicted 

with 86% accuracy whether or not a lake was achieving Good status for macrophytes. There 

was a slightly tendency to under-predict more than over-predict, but in only 3 out of 221 cases 

(1.4%) was the model prediction out by more than 1 status class. Appendix 4 lists the lakes 

with the largest positive and negative residuals (i.e. those where the macrophyte EQR was 

under- and over-estimated the most). 
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Figure 23: Matrix of measured and predicted macrophyte-EQR status class for the 221 

monitored lakes 

 

Inspection of the model residuals showed that the model was equally good at predicting 

macrophyte EQR for lakes in karst and non-karst catchments for large and small lakes, and 

for lakes in each of the 12 typology groups (see Appendix 4 for details). This confirms that the 

model has general applicability and does not appear to be biased for any particular type of 

lake. 

The final model was used to predict macrophyte EQR for the 590 lakes lacking macrophyte 

data. Overall, 77% of unmonitored lakes were predicted to be achieving Good status for 

macrophytes, compared with 60% of monitored lakes (Figure 24). Overall, low alkalinity lakes 

had the highest proportion of lakes at Good or High status, whereas moderate alkalinity lakes 

and small, shallow high alkalinity lakes had the lowest proportion (Figure 25). 

Figure 26 maps measured and predicted macrophyte status for all 811 lakes and reveals 

strong geographic variation in macrophyte status which broadly reflects regional variation in 

the intensity of land use and level of TP loading from point and diffuse sources.  
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Figure 24: Summary of macrophyte status for monitored and unmonitored lakes   

 

 

Figure 25: Summary of macrophyte status for all 811 lakes, by WFD typology   
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Figure 26: Map of measured and predicted macrophyte status for all 811 lakes 
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3.5 Overall status  

The predicted status classes for the three quality elements (TP, chlorophyll-a and 

macrophytes) were combined using the one-out, all-out rule to predict an “overall status”4 for 

every unmonitored lake. 

For monitored lakes, the models predicted the correct overall WFD status class with 64% 

accuracy and predicted with 86% accuracy whether or not a lake was achieving at least Good 

status. In only 2 out of 224 cases (0.89%) was the model prediction out by more than 1 status 

class (Figure 27). 

 

Figure 27: Matrix of measured and predicted overall status class for the 224 monitored lakes 

 

Around 75% of unmonitored lakes were predicted to be achieving Good overall status, 

compared with 52% of monitored lakes (Figure 28). Low alkalinity lakes had the highest 

proportion at Good or High overall status, whereas moderate alkalinity lakes and small, 

shallow high alkalinity lakes had the lowest proportion (Figure 29). Figure 30 maps the 

measured and predicted overall status for all 811 lakes. Overall status shows marked 

geographic variation reflecting, predominantly, the intensity of land use and level of TP loading 

from point and diffuse sources.  

 

 

 

 
4 In the context of WFD, “overall status” usually refers to a lake’s overall ecological and chemical status, 

but this study uses the term more narrowly to refer to a lake’s overall response to nutrient enrichment. 
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Figure 28: Summary of overall status for monitored and unmonitored lakes   

 

 

Figure 29: Summary of overall status for all 811 lakes, by WFD typology   
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Figure 30: Map of overall status for all 811 lakes 

 

The quality element(s) driving the overall (worst) nutrient status of monitored and unmonitored 

lakes are tabulated in Table 4. For both monitored and unmonitored lakes, macrophytes and/or 

TP were the most common driving elements. However, the model predictions for unmonitored 

lakes tended to have a slightly higher level of agreement across the three elements, with 37% 

(209 out if 587) of lakes having identical status classes for all three elements, compared to 

just 29% of monitored lakes. We suspect this is because the three models are ultimately based 

on the same predictor variables. Chlorophyll-a was a more common driving element for lakes 

in the south-west (Figure 31). 

 



APEM Scientific Report P00008062 

 

July 2022 v3 – Final Report Page 46 

 

Table 4: Worst element(s) driving overall nutrient status 

Worst element(s) driving overall nutrient 
status 

Monitored 
lakes 

Unmonitored 
lakes 

All lakes 

Chlorophyll-a 12 17 29 

Chlorophyll-a and macrophytes 5 2 7 

Macrophytes 61 134 195 

TP 24 48 72 

TP and chlorophyll-a 14 23 36 

TP and macrophytes 44 146 190 

TP, chlorophyll-a and macrophytes 64 217 281 

TOTAL 224 587 811 
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Figure 31: Worst element(s) driving overall nutrient status for all 811 lakes
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3.6 Uncertainty in status classifications 

 

One of the advantages of GAMs over hierarchical clustering (as used by Wynne and Donohue, 

2016), and other classification techniques such as k-nearest neighbours and classification 

trees, is that the models yield not only a central estimate of the response for each lake, but 

are also able to quantify the degree of certainty (or margin of error) in the predictions (for both 

monitored and unmonitored lakes).  

 

As an illustration, Figure 32 plots the TP model predictions for a representative sample of five 

monitored lakes. The degree of certainty in the predictions is shown by the 95% prediction 

intervals which, on average, include the true, measured TP concentration (marked ‘x’) for 95% 

of lakes; in other words, for any individual lake there is a 5% chance that the true TP 

concentration will fall outside the calculated prediction interval. Note that because TP 

concentration is modelled on a log10 scale, the prediction intervals are asymmetrical, and tend 

to be wider for lakes with higher TP concentrations. Note too that the model has a slight 

tendency to under-predict TP concentration (and therefore over-predict status). In the case of 

Ramor this leads to a mis-classification of status, although it should be remembered that 

measured status is also subject to error, so it is not possible to say definitely whether the 

measured or predicted status is correct, only that there is a disagreement. 

 

  
 

Figure 32: Measured (x) and predicted (●, with 95% prediction intervals) in-lake TP 

concentration for selected lakes 
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When assigning a WFD status class to unmonitored lakes, the prediction intervals can be used 

to quantify the degree of confidence that a lake is in each of the five predicted WFD status 

classes and, by extension, the confidence that it is achieving predicted Good status. These 

calculations mirror the confidence of class results calculated by the EPA for monitored lakes, 

but take account of the prediction error of the statistical model rather than the sampling error 

of the field measurements.  

 

By way of illustration, Table 5 details the confidence of class results for the same five lakes 

shown in Figure 32 (all five are monitored, but they serve to illustrate the information that can 

be generated for unmonitored lakes). Ardderry, which has a low predicted TP concentration, 

is very certain to be achieving Good status, whereas Ramor, which has much higher predicted 

TP concentration, is quite certain not to be achieving Good status. Knockaderry and Ramor 

are both predicted to be of Moderate status, with 50% confidence, but their confidence of class 

profiles indicate that Ramor is 19% less likely to be achieving Good status than Knockaderry. 

 

Table 5: Confidence of class assessment for predicted TP status for selected lakes 

Lake 

Confidence that TP status is… 

Certainty band 
High Good Mod Poor Bad 

Good 
or 

better 

Ardderry 0.74 0.26 0.00 0.00 0.00 1.00 Very certain pass 

Castlebar 0.28 0.63 0.09 0.00 0.00 0.91 Quite certain pass 

Graney 0.13 0.66 0.20 0.01 0.00 0.79 Quite certain pass 

Knockaderry 0.01 0.31 0.50 0.17 0.01 0.32 Uncertain fail 

Ramor 0.00 0.13 0.50 0.33 0.04 0.13 Quite certain fail 

 

 

Prediction intervals and confidence of class were calculated separately for TP, chlorophyll-a 

and macrophytes, and the full results are included in the Excel workbook that forms an 

electronic appendix to this report. As a summary, Table 6 categorises the 587 unmonitored 

lakes according to the degree of certainty that each is achieving at GES. Overall, the models 

were able to determine whether or not Good status was being achieved with reasonable (at 

least 75%) certainty for the vast majority of lakes; only 9% of lakes were an uncertain pass or 

fail for TP, 11% for chlorophyll-a and 19% for macrophytes (Table 6). 
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Table 6: Certainty of status predictions for unmonitored lakes 

Certainty band (confidence 
that lake is achieving GES) 

TP Chlorophyll-a Macrophytes Overall1 

Very certain pass (>95%) 316 422 250 219 

Quite certain pass (75-95%) 133 77 150 173 

Uncertain pass (50-75%) 35 27 52 49 

Uncertain fail (25-50%) 20 24 53 37 

Quite certain fail (5-25%) 70 35 43 63 

Very certain fail (<5%) 13 2 39 46 

TOTAL 587 587 587 587 

1 The overall certainty band is the worst of the certainty bands for the three quality elements 

 

The information shown in Table 6 may be used to prioritise lakes for expert judgment review 

(see Section 0), focusing attention on those borderline cases in the ‘uncertain pass’ and 

‘uncertain fail’ categories. 
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4. Classification of unmonitored lakes with high uncertainty 

 

The statistical modelling approach described above is able to predict an overall WFD status 

class for each unmonitored lake, and also quantify the degree of confidence that it is achieving 

GES. 

The models generally performed well and for the majority of lakes were able to determine with 

reasonable (at least 75%) confidence whether or not the lake was achieving GES (Table 6). 

For 86 (15%) of the 587 unmonitored lakes, however, confidence was less than 75%  because 

the driving element(s) was categorised as an uncertain pass or uncertain fail (Table 6). 

High uncertainty in the assessment of GES can occur when the statistical models have a high 

prediction error (particularly for lakes that have unusually high or low scores for some of the 

predictor variables), but more commonly occurs when the predicted concentration or EQR is 

close to the Good/Moderate boundary (since the risk of mis-classification is greatest for 

‘borderline’ lakes).  

For these lakes, we recommend that other local/supporting information (including expert 

judgment) to be used as part of a weight of evidence process to validate, or potential over-

ride, the predictions from the statistical models. The following checklist provides a structured 

approach for incorporating these additional lines of evidence.  
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1. Is it possible to identify why a lake has high uncertainty around its predicted 

status? 

 Are the predictor variables used in the models reliable/valid? In particular, sense-

check any values that have been predicted by the statistical models in Appendix 1 

as outliers can lead to inflated model prediction errors. Focus especially on lake 

depth and flow as these variables strongly influence both nutrient dilution and lake 

residence time. 

 How much agreement is there among the three quality elements? If all three 

elements give the same status class, then this could be considered to provide a 

greater level of confidence, even if individual elements have high uncertainty. 

 Which quality element(s) have high uncertainty? The chlorophyll-a and macrophyte 

models are inherently less certain because they take TP concentration as an input, 

which is itself predicted. So if the most uncertain element is chlorophyll-a or 

macrophytes, then consider whether overall status should be based on TP, as it 

comes earlier in the stressor-response framework. 

2. Can the status class predictions be validated? 

 How does the predicted status compare with the measured/predicted status of similar 

monitored/unmonitored lakes? Ideally focus on other lakes of the same WFD type, 

and check that the hydrological regime, level of nutrient pressure and any mitigation 

measures are comparable. 

 Is there a hydrologically-connected monitored lake within the catchment that could 

be used as a donor lake instead? Check that any candidate donor lake is of the same 

WFD type, and has a hydrological regime, level of nutrient pressure and mitigation 

measures that are similar to the recipient lake. 

3. Are there any known characteristics or stressors that have not been fully/properly 

accounted for within the modelling? 

 Does the nutrient load apportionment from SLAM concur with local knowledge of the 

stressors acting within the catchment? In particular, does SLAM adequately describe 

the influence of wastewater discharges and pig/poultry farming within the catchment? 

Are there any significant sources of nutrients within the immediate vicinity of the lake 

shore whose effect may be under-estimated by SLAM? 

 Is the lake a Heavily Modified Water Body (HMWB), or been subject to 

hydromorphological alteration? 

 Is there any evidence of invasive species impacts? 

 Is there any evidence of acidification, especially in area of high coniferous plantation 

forestry? 

 Has there been recent forestry activity or land-use change within the catchment?  

 Is the lake in a karstic catchment, or does it have strong groundwater influence? 

 Are there any major abstractions or water transfers to/from the catchment? 

 Could high historical nutrient inputs be contributing to internal nutrient loading? 

 Is there a large lake upstream that could be influencing nutrient retention and 

downstream water quality? 
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4. What mitigation measures have been undertaken within the catchment?  

 Is the lake part of an Area for Action (AfA) or has it been in the past? If so, when was 

it added? 

• Are there already improvements in progress in this catchment, and what stage is 

the work at? Could this have altered the status of the lake?  

• What is likelihood of the intervention having been successful and improving 

status? Consideration should be given to the lag time, wind exposure, 

stratification and historical nutrient inputs. 

 Is the lake on an Irish Water Capital Improvement Plan (plant upgrade)? Has this 

work been completed (at the time for which status is being predicted)? 

• Is there an agglomeration associated with any planned upgrades to the collection 

network (and when is this planned for)?  

• If so, what is the area of the agglomeration that intersects with the lake catchment 

(what % of the lake catchment area does this represent)? This could be 

interpreted as a proxy for urban pressures on the lake. 

 Does the lake overlap with a river sub-basin that is in an AfA? If so, what % of the 

catchment does this apply to and what is the likelihood of it improving lake status? 
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5. Discussion and recommendations 
 

5.1 Strengths of the approach  

This study used a regression modelling approach to identify and quantify the causes of spatial 

variation among lakes in TP concentration, chlorophyll-a EQR and macrophyte EQR. This 

approach is a departure from the donor-recipient approach used to date by the EPA to classify 

the status of unmonitored lakes (Wynne and Donohue, 2016) in that it does not seek to define 

discrete groups of lakes. Instead, regression modelling unlocks the full potential of the data 

collected by the EPA’s lakes monitoring programme by explicitly revealing the key factors that 

determine a lake’s trophic status and modelling how status changes along a gradient of 

nutrient enrichment pressure. In this sense, the approach is consistent with WFD guidance 

(European Commission, 2003a) because the predicted status of unmonitored lakes is based 

upon empirical data from hydrologically, geomorphologically, and geographically similar lakes.  

The choice of GAMs offers a number of advantages over hierarchical clustering (as used by 

Wynne and Donohue, 2016) and commonly-used classification techniques such as k-nearest 

neighbours and classification trees: 

• GAMs provide a flexible, data-driven way of describing non-linear relationships. 

Relationships are not constrained to be linear, and the analyst is not required to make 

(and subsequently test) any prior assumptions about the form of the relationship. 

Furthermore, in-built regularisation of predictor functions helps avoid overfitting (that 

is, the wiggliness of the curves is optimised automatically).  

• Spatial variation caused by unknown factors can be modelled explicitly, which is helpful 

not only for boosting the fit of the model, but also for suggesting additional predictor 

variables (or refinements to existing ones).  

• GAMs are easy to interpret. In contrast to some ‘black-box’ machine learning 

techniques, the curves produced by GAMs clearly show how the predictor variables 

act, individually and in combination, to drive variation in the response. Furthermore, 

their flexibility means that GAMs are adept at revealing ecological thresholds. 

• The GAM models developed in the present study have proven to be capable of 

achieving a reasonably high degree of classification accuracy, ranging from 86% to 

89% when classifying lakes at Good or better versus Moderate or worse.   

• Finally, GAMs, like other regression-based techniques, yield a central estimate of the 

response for each subject (lake), but are also able to quantify the degree of certainty 

(or margin of error) in the predictions. As illustrated in Section 3.6, prediction intervals 

can be calculated and used to quantify the degree of confidence that an unmonitored 

lake is truly in each of the five WFD status classes.  

A key achievement of this study was the successful integration of a variety of EPA datasets 

and modelling tools. Notably, the EPA’s SLAM model, which has previously been used to 

model nutrient load to rivers and estuaries (Mockler et al., 2016; Mockler et al., 2017), was 

combined with estimates of catchment run-off generated by the QUBE model (Bree, 2018) to 

yield an estimate of the influent TP concentration, which proved to be a strong predictor of in-

lake concentration. Notwithstanding some limitations of these datasets and models (discussed 

in Section 5.2 below), these results validate the use of the SLAM model for understanding 

phosphorus dynamics in Irish lakes, and illustrate the potential benefits of integrating datasets 
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and tools that originally may have been developed for other purposes. Furthermore, the 

application of statistical models to impute missing values in many of the variables (detailed in 

Appendix 1) has yielded a complete and up-to-date set of catchment and lake characteristics 

which are available for use in future studies. 

5.2 Limitations of the approach  

Whilst the approach was successful in predicting the status of unmonitored lakes, some 

predictor variables were incomplete or had other data quality issues. Other potentially 

important variables could not be quantified, and the regression-modelling methodology itself 

rests on some important assumptions. These limitations are discussed in further detail below. 

5.2.1 Data issues  

Geographic proximity. As noted by Wynne and Donohue (2016), the catchment variables 

derived for each lake do not currently consider the proximity to the lake itself. For example, 

carbonate-rich rocks such as limestone can have a disproportionately large influence on lake 

alkalinity when present in the immediate vicinity of the lake. Similarly, the SLAM Framework 

predicts phosphorus losses based on the percentage land use within the catchment but does 

not consider how close these sources are to the lake, and therefore the potential for nutrient 

transport. 

TP Load Estimation from Agricultural Activity. The SLAM framework covers all major 

sources of TP from point and diffuse sources (see Appendix 1 for details) and so provides a 

reasonably comprehensive assessment of TP loads. The model includes estimates of TP 

losses from farms, but these figures assume compliance with regulatory limits on the 

spreading of waste to land; excess spreading is not accounted for, and the model is therefore 

likely to under-estimate TP loads from these sources by an unknown amount for some lakes.  

TP loads from wastewater discharges. The SLAM framework was configured to include 

discharges within a 2 km buffer around the catchment (a legacy of the original national-scale 

modelling study), which meant that TP from wastewater was over-estimated for a small 

minority of lakes.  

The EPA subsequently undertook a sensitivity analysis in May 2022 to quantify the effect this 

had on estimated TP loads (D. Cunningham, pers. comm.). Of the 844 lake catchments 

assessed, there was no change in TP load for 764 of lakes, an increase in 14 lakes and a 

decrease in 66 lakes. Of the decreases, 44 were solely due to wastewater emissions from 

points near (but outside) the lake catchment. Of the remaining 22, the decreases may have 

been due to lower 2018 emissions and/or the exclusion of some emission points. 

The list of 44 lakes was then filtered to identify six unmonitored lakes of Moderate or worse 

predicted status where the total TP load decreased by more than 10% (Table 7).  

Consequently, there is a high risk that that the over-estimation of TP from wastewater 

discharges led to these lakes being erroneously assigned as not achieving GES. 
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Table 7: Unmonitored lakes of Moderate or worse predicted status where TP loads were over-

estimated by more than 10% 

EU water body code Lake name 

IE_NB_03_90 Lambs 

IE_SH_27_123 Ballybeg 

IE_NB_03_79 Glaslough 

IE_SE_17_6 Ballinlough 

IE_EA_10_30 Lower 

IE_EA_09_69 Leixlip Reservoir 

 

QUBE flow/runoff estimates. It is assumed that the QUBE (EPA HydroTool) model is a good 

indicator of outflow for each of the lakes. It is also assumed that the extent a lake is 

hydrologically connected within the sub-basin will control the appropriateness of some of the 

datasets. There were 144 lakes where the EPA HydroTool model did not return flow data, 

which could have been due to: a) the lake being in a karstic catchment; b) absence of a QUBE 

flow estimate point within the lake’s contributing catchment; c) the lake not lying within a 

recognised contributing hydro catchment upstream of a flow estimation point; or d) significant 

groundwater influence. The EPA HydroTool model points are not necessarily directly 

associated with the outflow of the lakes, due to the location of the points frequently being 

situated further upstream in the catchment.  

Catchment stream density. The size and complexity of the RivNetRoutes file (downloaded 

from the EPA GeoPortal) meant that we took the decision to calculate stream density only for 

the nested lake catchments that were missing stream density values from the previous 

research by Wynne and Donohue (2016). As a result, it is possible that if the stream densities 

had been calculated for the nested lake catchments that had existing stream density values, 

we would assume discrepancies would be due to the changes in nested catchment area 

values for each lake following the recent updating of catchment delineation. 

Lake depth. Lake levels fluctuate naturally and the measured depths are assumed to 

represent typical or average conditions for each lake. The bathymetric survey data were 

collated in 2013 and pre-date the other datasets, although they are not expected to have 

changed appreciably since then. The model that was used to estimate mean depths for 204 

lakes without depth data was not as successful at accurately predicting mean depths 

compared to other statistical models. The collection of depth data for these lakes would better 

refine the depth model (see Section 5.3.1 for further detail). 

Inter-drumlin lakes. Inter-drumlin lakes, which are particularly prevalent in Cavan and 

Monaghan, have a distinctive glacial moraine geology, and often have extensive nutrient-rich 

wetlands, both fringing and elsewhere in the catchment. This may render estimates of flows, 

TP loading and TP influent concentration unreliable. 

Nested catchment boundaries. Following the modelling work, the EPA identified delineation 

issues in the nested catchments v2 layer for three lakes: Creggan, Doonis, and Scur. In all 

three cases, the catchments were fragmented into multiple polygons (Figure 33; Figure 34; 

Figure 35). Catchment characteristics for these lakes will therefore not be representative of 

the true catchment area. 
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Figure 33: Map of Lake Creggan’s multi-part nested catchment 

 

 

Figure 34: Map of Lake Doonis’ multi-part nested catchment 
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Figure 35: Map of Lake Scur’s multi-part nested catchment 

 

5.2.2 Missing factors 

Other stressors. Stressors such as hydromorphology, acidification and invasive species can 

potentially influence the ecological status of chlorophyll-a and macrophytes, but these factors 

were not included in the predictive regression models because it was not possible to 

categorise or quantify the strength of these pressures for every lake. In particular, zebra 

mussels (Dreissena polymorpha) are becoming widespread in Ireland (Minchin et al., 2003; 

CDM Smith, 2019; Figure 36), especially in high alkalinity lakes (D. Tierney, EPA, pers. 

comm.) and can quickly become abundant (CDM Smith, 2019). Quagga mussels (Dreissena 

rostriformis bugensis) are now present in Ireland (Baars et al., 2022) and likely to expand their 

distribution rapidly. Their ability to filter large volumes of water all year round can reduce 

concentrations of nutrients, phytoplankton and chlorophyll-a, and increase water 

transparency, with positive consequences for macrophytes (Zhu et al., 2006; Higgins and 

Zanden, 2010; Salgado et al., 2018). Conversely, they are also capable of mobilising 

sediment-bound phosphorus through their feeding action, and can be responsible for 

increasing internal loading of phosphorus and increasing in-lake TP concentrations (Taylor et 

al., 2012, cited by CDM Smith, 2019). The overall effect of these mussel species is, therefore, 

difficult to predict and will depend on factors such as the trophic status of the lake when the 

invasion began, the number and size of the established population, and presence of predators, 

parasites or other competitors (CDM Smith, 2019). 
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Figure 36: Distribution of invasive zebra mussels in Ireland (National Biodiversity Data Centre, 

2022)  

 

Upstream retention. The SLAM framework includes a simple lake retention model which 

reduces loads from catchments draining through all lakes above a threshold size of 50 ha. 

The retention factors used (24% for TP and 10% for nitrogen) are derived from studies in the 

Lee catchment (Sullivan et al., 1995) and whilst they provide a useful approximation at a river 

basin or national scale, the level of retention in individual lakes is likely to vary considerably, 

dependent on factors such as residence time (Foy, 1992). For this reason, the TP load 

estimates used in this study had the retention factor set to 0%, meaning that total TP loads 
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were over-estimated by an unknown amount for some lakes (especially those which have a 

large lake in close proximity upstream). 

Instead of accounting for nutrient retention in the SLAM model, the statistical regression 

models included stream density and upstream lake density as proxies for nutrient retention in 

the upstream catchment. In practice, both stream density and upstream lake density were 

found to be poor predictors of in-lake TP concentration and were not retained in the final TP 

model (Section 3.2). This does not necessarily mean that the predictions of TP concentration 

are systematically biased, however, because the overall regression relationship between 

modelled influent TP concentration and in-lake measured TP concentration will adjust to 

compensate for the over-estimation of TP loads. Rather, the predictions of TP concentrations 

for unmonitored lakes will be less precise than they would otherwise be if the level of nutrient 

retention was known for each lake catchment. 

Internal TP loading. The SLAM framework used recent (ca. 2018) data on anthropogenic 

pressures to estimate external TP loads contemporary with the measured (2016-2018) data 

on lake status. Historical nutrient enrichment of lakes was not accounted for in the modelling. 

Contemporary TP loads are expected to provide a good prediction of in-lake TP concentration 

for a majority of lakes. In other lakes, however, internal phosphorus loading from lake 

sediments may be a significant additional source of TP, particularly in lakes that have 

experienced high TP loadings over a prolonged period, and in lakes where anoxic conditions 

and/or wind-driven re-suspension of sediment promote phosphorus release (Marsden 1989; 

CDM Smith, 2019; McElarney et al., 2021). Internal TP loading may be especially important 

in inter-drumlin lakes; for example, a high frequency monitoring programme at Namachree 

Lough (Co. Monaghan) found that lake sediments provided 300% more soluble reactive 

phosphorus (SRP) than external sources loading during spring and summer (CDM Smith, 

2019).  

Seasonal and inter-annual variation. The present study focused on assessing status over 

a three-year reporting period (2016-2018) and used data from SLAM and QUBE representing 

long-term annual average TP loads and flows. The regression models do not, therefore, 

capture seasonal and inter-annual variability in nutrient loads that can be important in 

determining water quality and ecological responses on a lake-specific basis. Irish lakes exhibit 

diverse seasonal patterns in TP concentrations including winter maxima, summer maxima, as 

well as no clear seasonal patterns (Irvine et al., 2001). The extent and timing of seasonal 

peaks in TP can aid in understanding the relative importance of external and internal TP 

loading (CDM Smith, 2019), as well as the contribution of different catchment sources (e.g. 

point sources may dominate inputs during low flows and diffuse sources may dominate inputs 

under high flow conditions). The flexibility of GAMs means, however, that the regression 

models could be extended to also consider temporal as well as spatial variation in TP 

concentration, which could potentially help to improve predictions of status for individual lakes.  

5.2.3 Statistical modelling  

Under-estimation of effect sizes. The statistical regression models developed in this study 

are based on other models and datasets which themselves are subject to a variety of 

systematic and random errors. Error in the measurement of predictor variables results in 

weaker regression relationships and reduces their statistical significance, so it is possible that 

the effect of some variables has been under-estimated, or that more subtle effects of other 
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variables may have been overlooked altogether. Despite this, the final models were able to 

successfully identify a small number of variables that explained a high proportion of the 

variation in TP, chlorophyll-a and macrophytes among lakes. 

Confidence intervals. The calculated confidence intervals around the TP, chlorophyll and 

macrophyte predictions assume that all the predictor variables for each lake are known without 

error. In reality, many predictors are subject to measurement or modelling errors, which will 

propagate through to add uncertainty to the model predictions. Unfortunately, these errors are 

often difficult or impossible to quantify, making it difficult to undertake a comprehensive 

assessment of uncertainty. This issue of predictor uncertainty is partially mitigated through the 

use of log-transformations, which reduce the sensitivity of the predictions to small changes in 

the values of those predictor variables.  

Representativeness. Using data from monitored lakes to predict the status of unmonitored 

lakes implicitly assumes that the 224 monitored lakes are representative of the full population 

of 811 lakes. However, a higher proportion of large lakes are monitored than small lakes, and 

a higher proportion of high alkalinity lakes are monitored than low alkalinity lakes (see Figure 

4), so there is a risk that the models will be biased towards the behaviour of larger, higher 

alkalinity lakes. This risk is partially mitigated by the inclusion in the models of typology as a 

candidate predictor, so that any systematic differences among typology groups can be 

accounted for. More difficult to control for is the risk of bias if there is tendency for monitoring 

to target, within a type, those lakes that are known to exhibit symptoms of eutrophication.  

Extrapolation. The modelled regression relationships hold true over the range of 

characteristics represented by the monitored lakes in the calibration dataset, but care must be 

taken when extrapolating the models to predict the status of unmonitored lakes that have more 

extreme characteristics. This is particularly the case with GAMs because their flexibility 

permits the ends of the curves to be heavily influenced by individual lakes when data are 

sparse. In addition to the risk of bias that this poses, the predictions will be less certain and 

the prediction intervals will be wider. Figure 37 shows, however, that the 224 monitored lakes 

do, generally, cover the full range of characteristics of the 811 WFD lakes, which means the 

models can be used with confidence to predict the status of unmonitored lakes; the only 

exception is the relatively poor coverage of lakes with very low modelled influent TP 

concentrations (the log_modelled_tp_mg_l variable in Figure 37), where some extrapolation 

beyond the calibration dataset is required. 
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Figure 37: Distribution and coverage of monitored (blue) and unmonitored lakes (red) with 

respect to the key variables used for modelling lake status  

 

5.3 Recommendations  

5.3.1 Model refinements  

Given the limitations discussed in Section 5.2 above, there is clearly potential to refine the 

regression models and further improve the accuracy of the status class predictions for 

unmonitored lakes. Further refinements are likely to deliver diminishing returns, and so the 

following recommendations are therefore ranked in descending priority order, starting with 

activities that are relatively straightforward and/or expected to yield the biggest improvements.  

It is worth noting that including additional predictor variables is not guaranteed to improve the 

fit and predictive performance of the models; additional predictors will only be beneficial if they 



APEM Scientific Report P00008062 

 

July 2022 v3 – Final Report Page 63 

 

are uncorrelated with existing predictors, and if they explain variation among lakes that is not 

already explained by geographic location (i.e. easting/northing).  

1. It is recommended that the catchment delineation of lakes in the nested v2 layer be 

checked and, if necessary, the catchment-scale variables be re-calculated for any lakes where 

the delineation is incorrect. 

2. Residence time has been shown to be a key factor, but is poorly estimated for lakes that 

lack measured depths or modelled flows. Annual average flow appears to be estimated 

reasonably well by QUBE for most lakes, but may be less reliable for inter-drumlin lakes and 

others with strong groundwater influences. In these cases, QUBE may not be the most 

appropriate tool, and field measurements or groundwater models may be able to provide a 

better quantification of residence time, and also influent TP concentration. Similarly, 

predictions of mean depth from statistical models have appreciable error and residence time 

estimates would be improved if depths could be measured directly or if better predictors of 

depth could be found.  

3. Given the strong influence of influent TP concentrations on in-lake TP concentration, it is 

recommended that the EPA explores options for improving the estimation of TP loads. For 

example, the SLAM-modelled TP loads may be improved by excluding TP inputs from 

wastewater discharges located outside the lake catchment boundary, better accounting for 

agricultural waste and, crucially, accounting for upstream retention. The SLAM framework 

currently includes the facility to apply a fixed retention factor to reduce loads from catchments 

draining through all lakes >50 ha, but greater success may be achieved by developing lake-

specific retention factors that take into account residence time (as derived in this study). If 

refinements to SLAM model were able to account for some of the currently unexplained spatial 

variation in influent TP concentration, then this may also provide greater confidence about the 

exact shape of the residence time effect and, in particular, clarify how sensitive long residence 

time lakes are to TP inputs. 

4. It is recommended that the fit of the current models is examined in detail in order to identify 

potentially important factors that may be missing or poorly represented at present. 

Focusing on lakes with the largest residuals (see Appendices) may be especially instructive. 

For example, where under-prediction of TP concentration indicates a potentially important 

unknown source of phosphorus, a lake-specific assessment is recommended to determine 

whether an important catchment source has not been represented fully within the SLAM model 

or whether a significant internal release of phosphorus from lake sediments is the more likely 

cause. Similarly, the tendency of both the chlorophyll-a and macrophyte models to over-predict 

status could reflect the influence of other pressures which not currently accounted for in the 

models. Any factors identified then either be incorporated into the regression models (if they 

can be quantified) or else taken into account when deciding whether to apply an expert 

judgment over-ride (see Section 0). 

5. Zebra mussels can strongly influence concentrations of nutrients and chlorophyll-a, and 

indirectly benefit macrophyte communities. Information on their distribution is readily available 

from the National Biodiversity Data Centre and it is recommended that this and other data are 

used to categorise the presence/absence of zebra mussels in each lake (e.g. confirmed, 

probable, not currently known). This information could then be included as an additional 
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predictor variable in the chlorophyll-a and macrophyte models. The potential impact of quagga 

mussels is unknown, but they may become equally important in the future. 

6. As easting/northing was retained as a predictor variable in the TP and macrophyte 

statistical models, a possible future refinement would be to investigate the possible causes of 

this currently unexplained spatial variation among lakes, and which geochemistry variables 

this predictor variable may be representing. 

5.3.2 Future monitoring 

The ability to predict, with reasonable accuracy, the status class of unmonitored lakes presents 

the EPA with new options for its WFD monitoring programme. “Model-based monitoring” 

refers to a monitoring strategy whose goal is to collect, as efficiently as possible, the data 

necessary to calibrate a predictive model. Any future changes to the lakes monitoring network 

could therefore be made with a view to optimising the predictive performance of the regression 

models. 

For instance, should the EPA wish to reduce its monitoring budget, then existing lakes could 

be screened to identify those that provide redundant information, thereby reducing costs whilst 

minimising loss in predictive performance. Conversely, if the EPA wished to expand its 

monitoring network, new lakes could be selected for monitoring in a way that maximised gains 

in predictive performance across the set of 811 lakes. Similar approaches have been used for 

designing river water temperature networks in Scotland (Jackson et al., 2016) and England 

(APEM, 2022), and optimising Wales’s national electrofishing programme (APEM, 2019). 

A further recommendation, proposed by CDM Smith (2019), is to align operational monitoring 

of rivers and lakes to ensure, wherever feasible, that the inflowing rivers to lakes are monitored 

for flow and nutrients as well as the lakes themselves, particularly in the inter-drumlin 

landscape. 

Lakes that still have a high level of uncertainty around whether they are ‘Not at risk/At risk’ 

after consideration of the factors outlined in Section 4.1 should be considered for: 

• Further investigation through one-off sampling/site visit; 

• Inclusion in the national monitoring programme.  

 

5.4 Application of approach to new lakes and future reporting cycles 

The statistical modelling workflow developed in this study is coded in R, available to run as a 

.Rmd script file and therefore fully documented, auditable and reproducible. 

To apply the existing models to classify the status of new lakes, the following data will 

need to be assembled for each new lake: 

• lake location (easting and northing); 

• lake area; 

• catchment area; 

• % limestone and % peat (unless alkalinity, colour and run-off are all known); and 

• TP load (from SLAM); 



APEM Scientific Report P00008062 

 

July 2022 v3 – Final Report Page 65 

 

This is the minimum amount of data required; all other variables that directly or indirectly feed 

into the predictive models (see Figure 1) can, if required, be imputed using the statistical 

models described in Appendix 1, although it is preferable to use measured data where 

possible. The new lakes can be simply be appended to the master input data table, and the 

script run to generate a fresh set of predictions for the 587+ unmonitored lakes. 

To classify the status of the existing 587 unmonitored lakes in future reporting cycles, 

the following data will need to be assembled: 

• updated TP concentrations, chlorophyll-a EQRs and macrophyte EQRs for monitored 

lakes; and 

• updated TP loads (from SLAM) for all lakes (to align with the new reporting period). 

This is the minimum amount of data required; the physical (flow, depth, residence time etc) 

and chemical (alkalinity, colour etc) characteristics of the lakes and their catchments may be 

assumed to be unchanged, but newer, improved estimates should be used if available. 

Additional variables could also be assembled and used as predictor variables in the models if 

desired. The structure of the master input data table must not be changed; only the data should 

be updated. 

Using the updated dataset, the models can then be updated before being applied to predict 

the status of each unmonitored lake. The script automates most of this workflow, the 

exceptions being (i) the need to manually repeat the model selection process to determine 

which variables should be retained in the final models, and (ii) the need to confirm that the 

models remain fit-for-purpose (i.e. have acceptable accuracy and are not unduly biased). 
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7. Abbreviations used in this report 
 

BIC  Bayesian Information Criterion 

CIS  Common Implementation Strategy 

CORINE  Coordination of Information on the Environment 

EPA   Environmental Protection Agency 

EQR  Ecological Quality Ratio 

GAM  Generalised Additive Model 

GES  Good Ecological Status 

GIS   Geographic information system 

GSI   Geological Survey of Ireland 

HMWB  Highly Modified Water Body 

P Phosphorus 

SANICOSE  Source Apportionment of Nutrients in Irish Catchments for On-Site Effluent 

model 

SDI Shoreline Development Index 

SLAM   Source Load Apportionment Model 

TP   Total Phosphorus 

WFD   Water Framework Directive  
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Appendix 1  Data sources and data processing 

 

Mean slope 

The previous research by Wynne and Donohue (2016) created a slope raster from a 5 m DEM 

to derive summary statistics of the mean catchment slope (in °) for 759 lakes based on the 

original version of the nested catchments layer.  

Using these data, a GAM regression model was developed to predict the mean catchment 

slope for the lakes with missing data values. Slope was modelled as a function of the 

easting/northing predictor variable. Mean catchment slope was log10 transformed to satisfy the 

model’s assumptions of normally distributed errors and heterogeneous variables.  

The statistical model explained 58.9% of the variation in mean catchment slope (Figure 38; 

Figure 39; Figure 40). Figure 41 illustrates the relationship between mean catchment slope 

and easting/northing. 

The final model was used to predict mean catchment slope for the remaining 52 lakes; Figure 

42 maps the measured and predicted slope for all 811 lakes.  

 

 

 

Figure 38: Residuals plots for the mean catchment slope model   
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Figure 39: Statistical summary of the mean catchment slope model   

 

 

Figure 40: Predicted vs measured slope for the 759 lakes with mean catchment slope values 
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Figure 41: Partial effects plot showing the effect of easting/northing on mean catchment slope 
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Figure 42: Map of measured and predicted mean catchment slope for all 811 lakes 
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Range in slope (50 m buffer) 

The previous research by Wynne and Donohue (2016) created a slope raster from a 5 m DEM 

to quantify the range in slope within 50 m of the lake shore (in °) for 759 lakes.  

Using these data, a GAM regression model was developed to predict the range in slope (50 

m buffer) for the lakes with missing data values. Range in slope (50 m buffer) was modelled 

as a function of the easting/northing predictor variable. Range in slope (50 m buffer) was log10 

transformed to satisfy the model’s assumptions of normally distributed errors and 

heterogeneous variables.  

The statistical model explained 39.2% of the variation in range in slope (50 m buffer) (Figure 

43; Figure 44; Figure 45). Figure 46 illustrates the relationship between range in slope (50 m 

buffer) and easting/northing. 

The final model was used to predict mean catchment slope for the remaining 52 lakes; Figure 

47 maps measured and predicted range in slope (50 m buffer) for all 811 lakes.  

 

 

Figure 43: Residuals plots for the range in slope (50 m buffer) model   
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Figure 44: Statistical summary of range in slope (50 m buffer) model   

 

 

Figure 45: Predicted vs measured range in slope for the 759 lakes with range in slope (50 m 

buffer) values 
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Figure 46: Partial effects plot showing the effect of easting/northing on range in slope (50 m 

buffer) 
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Figure 47: Map of measured and predicted range in slope (50 m buffer) for all 811 lakes
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Density of upstream lakes 

The GIS methodology used by Wynne and Donohue (2016) was adopted to estimate the 

density of upstream lakes for all 811 lakes, but with the nested catchments v2 layer. The latest 

lake segments layer had 12,217 segments, including ponds, reservoirs, lakes, and null values. 

Due to size of the datasets, spatial indices were created before each tool was run on the 

layers, and columns that weren’t needed in the shapefiles were removed where necessary. 

The lake segments were clipped to the extent of the nested catchments v2 layer to reduce the 

size of the file to only those segments that were within the catchments of interest. Area values 

(in km2) for the lake segments were added as a column to the layer. Using eu_code as the 

common ID attribute, the lake area values from the WFD lake water bodies layer was joined 

onto the nested catchments v2 layer. This joined layer was exported as a new shapefile.  

A spatial join of the lake segments layer onto the new shapefile was performed, and the lake 

segments area was summed for each nested catchment. This gave a total area for all lakes 

within each WFD lake catchment (km2). The area of the WFD lake itself was then subtracted 

from the total lake area. The result was then expressed as a proportion of the catchment area 

(km2), as illustrated in Figure 48. 

In a few instances (e.g. Ballaghkeeran, Castle CN, Killinure, Tap South), the proportion 

exceeded 1 because these lakes were a part of a larger lake or directly linked to a 

conglomerate of lakes that were deemed to be the same catchment during the spatial join 

because a part of their feature was within and/or touching the lake catchment polygon. To 

resolve this issue, upstream lake segments were identified and extracted manually. 
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Figure 48: Map of lake density for all 811 lakes 
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Stream density 

Wynne and Donohue (2016) calculated stream density for 758 lakes using the previous 

version of the nested catchments layer. Due to the time required to process the RivNetRoutes 

layer, the present study only calculated stream density for the remaining 53 lakes, using the 

same GIS methodology as Wynne and Donohue (2016) but with the nested catchments v2 

layer. 

The RivNetRoutes layer was used to find the total length (km) of all streams within each WFD 

lake catchment. This value was then divided by the catchment area (km2) to give the density 

of streams per km2 of catchment (km/ km2; Figure 49). 

 

 

Figure 49: Map of stream density for all 811 lakes 
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Limestone 

The GIS methodology used by Wynne and Donohue (2016) was adopted to estimate the 

percentage cover of limestone bedrock for all 811 WFD lakes, but using the nested 

catchments v2 layer.  

The GSI hydrostatic rock units layer was downloaded from the EPA GeoPortal. The following 

categories from the DESCRIPT column in the Groundwater_Rock_Units_ITM layer were 

taken to be limestone:  

• Dinantian (early) sandstones, shales, and limestone;  

• Dinantian dolomitised limestones;  

• Dinantian lower impure limestones;  

• Dinantian mixed sandstones, shales, and limestones;  

• Dinantian pure bedded limestones;  

• Dinantian pure unbedded limestones;  

• Dinantian shales and limestones; and 

• Dinantian upper pure limestones.  

These categories were dissolved to create one feature, which was then intersected with the 

nested catchments v2 layer to give the total area (km2) of limestone in each catchment. This 

was then expressed as a proportion of the total catchment area (km2). 

Small discrepancies between the calculated figures and those produced by Wynne and 

Donohue (2016) could be due to the use of slightly different bedrock categories (Wynne and 

Donohue did not document which they used) and/or the use of the updated nested catchments 

v2 layer. 

Peat 

The GIS methodology used by Wynne and Donohue (2016) was adopted to estimate the 

percentage cover of peaty subsoils for all 811 WFD lakes, but using the nested catchments 

v2 layer.  

The Subsoils.ie layer was downloaded from the EPA GeoPortal. The following categories from 

the PAR_MAT column were taken to be peat:  

• BktPt (blanket peat); 

• RsPt (raised peat); 

• FenPt (fen peat); and 

• Cut (cutover peat). 

These categories were dissolved to create one feature, which was then intersected with the 

nested catchments v2 layer to give the total area (km2) of peat subsoil in each catchment. This 

was then expressed as a proportion of the total catchment area (km2).  

Small discrepancies between the calculated figures and those produced by Wynne and 

Donohue (2016) could be due to the use of slightly different subsoil categories (Wynne and 

Donohue did not document which they used) and/or the use of the updated nested catchments 

v2 layer. 
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Karst 

The GIS methodology used by Wynne and Donohue (2016) was adopted to estimate the 

percentage cover of karst aquifers for all 811 WFD lakes, but using the nested catchments v2 

layer.  

The GSI groundwater resources bedrock aquifer layer (IRL_AQUIFER_BEDROCK_ITM 

shapefile) was downloaded from the EPA GeoPortal. The following aquifer units from the 

AQUIFER_CAT column were taken to be karst:  

• Rkc (Regionally Important Aquifer - Karstified (conduit);  

• Rkd (Regionally Important Aquifer - Karstified (diffuse);  

• Rk (Regionally Important Aquifer - Karstified);  

• Lk (Locally Important Aquifer - Karstified);  

• Rf/Rk (a border of karstified and fissured bedrock regionally important aquifers); 

• RkNI;  

• RkcNI; and 

• LkNI.  

The Ballyshannon Limestone Formation was the only feature in the dataset listed as Rf/Rk. 

The features with an ‘NI’ suffix were either cross border or entirely within Northern Ireland.  

These categories were dissolved to create one feature, which was then intersected with the 

nested catchments v2 layer to give the total area (km2) of karst aquifers in each catchment. 

This was then expressed as a proportion of the total catchment area (km2).  

Lakes with >25% karst were then categorised as karst lakes. 

Small discrepancies between the calculated figures and those produced by Wynne and 

Donohue (2016) could be due to the use of slightly different aquifer categories (Wynne and 

Donohue did not document which they used) and/or the use of the updated nested catchments 

v2 layer. 

Phosphorus loading 

The EPA’s Source Load Apportionment Model (SLAM, v303) was used to estimate the total 

annual TP load entering each WFD lake following attenuation or treatment (Mockler et al., 

2017; Mockler and Breun, 2018). The model contains a number of sub-models that take 

account of point source discharges from wastewater treatment works, industrial sources, 

surface water overflows, and septic tanks (using a model called SANICOSE, Gill & Mockler, 

2016). The ‘Catchment Characterisation Tool’ was used to produce sub-models for pasture 

and arable land-use (Archbold et al., 2016).  

Using the nested catchments v2 layer, the SLAM framework collated the following spatial 

datasets to characterise the land-use and physical characteristics of each WFD lake 

catchment: 

• PIP models (developed initially by the Pathways and CatchmentTools Research 

Projects, and by the EPA Catchments Unit) (Mockler et al., 2017) 

• CORINE land use update 2018; 

• Good Agricultural Practice Regulations; 
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• Agricultural LPIS and AIM; 

• soil classification and natural soil drainage map; 

• depth to bedrock map; 

• subsoil permeability (K) map; 

• national recharge map; 

• potential bedrock denitrification map; and 

• aquifer bedrock boundaries. 

Using these datasets, SLAM estimated TP loads from the following point and diffuse sources: 

• municipal wastewater treatment plants; 

• septic tank systems; 

• other licensed discharges; 

• pasture; 

• arable; 

• forestry; 

• peatlands; 

• urban diffuse; and  

• atmospheric deposition on water. 

These estimates were combined to provide an estimate of total TP loading to each lake (in 

kg/ha/year). 

The version of SLAM used in this research did not consider the following pressures: 

• non-licenced industries; 

• water treatment plants; 

• WWTP emergency overflows; 

• non-compliance not captured by AERs; 

• human burials; 

• animal burials; 

• abstractions/diversions; 

• aquaculture; or 

• Historically Polluted Sites. 

For reference, Figure 50 lists the input data that was included in SLAM v303, including the 

calculation methods and time period of each data input. 
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Figure 50: SLAM v303 input data   

 

 

Runoff and flow 

Flow data was requested from the EPA. The flow data received and downloaded included 

QUBE data and an EPA nested hydro catchments dataset. 

QUBE (formerly known as the EPA HydroTool) is a model that generates natural flow duration 

curves in ungauged catchments from flows at 145 gauged catchments of similar character, 

using a procedure called Region of Influence which is based on catchment descriptors (Bree, 

2018). The model does not take into account artificial influences, for example abstractions or 

discharges. 

For each WFD lake, the naturalised annual mean flow (NATAMF) in m3/s (converted to m3/yr) 

was extracted from the downstream QUBE estimation point that was closest to the lake 

outflow. Data was available for 667 lakes (NATAMF data for Quivvy was not available in the 

QUBE data download, but a value was taken from the QUBE point associated with Erne 

Upper; Quivvy is therefore included in the total 667 lakes with data). Of the remaining 144 

lakes, 75 lakes were not situated within a recognised contributing hydro catchment upstream 

of a flow estimation point, and 69 lakes did not have a QUBE estimation point within the hydro 

catchment (e.g. because there were significant groundwater influences that could not be 

modelled). 

The annual mean flow (m3/yr) was divided by the hydrological catchment area upstream of the 

QUBE estimation point (km2) to give a standardised measure of annual runoff (m3/km2/yr). 

Eliminating the effect of catchment size in this way allowed geographic variation in run-off to 

be modelled so that estimates of flow could be derived for the 144 lakes lacking QUBE data. 
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Using the QUBE data, a GAM was developed to understand and quantify the causes of 

variation in runoff from lake to lake. Specifically, runoff was modelled as a function of the 

following predictor variables: 

• mean catchment slope (log10-transformed); 

• % peat (as an indicator of the soil type in the upstream catchment); 

• % limestone (as an indicator of the geology of the upstream catchment); and 

• easting/northing (to account for other sources of spatial variation). 

Backward model selection using BIC was used to retain only the most relevant predictor 

variables; in this case, all four variables were retained in the final model (Figure 51; Figure 

52). Overall, the model explained 86.5% of the variation in runoff (Figure 53). Figure 54 

illustrates the relationship between runoff and each variable whilst holding the other variables 

constant at their mean values.  

The final model was used to predict runoff for the remaining 144 lakes; Figure 55 maps 

measured and predicted runoff for all 811 lakes.  

The annual average flow (m3/yr) for all 811 WFD lake outlets was then calculated by dividing 

the annual runoff (either modelled or predicted, m3/km2/yr) by the lake catchment area (km2). 

As the QUBE estimation points were a variable distance downstream of the lake outlet, this 

calculation assumes that runoff across the hydrological catchment (upstream of the QUBE 

estimation point) is constant, and a good estimate of runoff from the smaller (nested) lake 

catchment. 
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Figure 51: Residuals plots for the runoff model   

 

Figure 52: Statistical summary of the runoff model   
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Figure 53: Predicted vs measured runoff for the 667 lakes with QUBE data 
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Figure 54: Partial effects plots showing the effect of each variable on runoff 
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Figure 55: Map of measured and predicted runoff for all 811 lakes
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Alkalinity 

Alkalinity measurements (mg/l) were available for 223 monitored lakes from the EPA’s 

AQUARIUS database. The measurements for the monitored lakes were averaged over a 9-

year period (2007-2015) to give an estimate of long-term mean alkalinity for each lake. 

Using these data, a GAM regression model was developed to understand and quantify the 

causes of variation in alkalinity from lake to lake. Alkalinity was modelled as a function of the 

following predictor variables: 

• % peat (as an indicatory of the extent of peaty spoils in the upstream catchment); 

• % limestone (as an indicatory of the geology of the upstream catchment); and 

• easting/northing (to account for other sources of spatial variation). 

%peat and %limestone were chosen as candidate predictors because Wynne and Donohue 

(2016) used them successfully to predict the alkalinity category (low, moderate, high) of lakes 

using a regression tree model. Alkalinity was log10 transformed to satisfy the model’s 

assumptions of normally distributed errors and heterogeneous variables.  

Backward model selection using BIC was used to retain only the most relevant predictor 

variables; in this case, all three variables were retained in the final model (Figure 56; Figure 

57). Overall, the model explained 85.9% of the variation in alkalinity (Figure 58). Figure 59 

illustrates the relationship between alkalinity and each variable whilst holding the other 

variables constant at their mean values.  

The final model was used to predict alkalinity for the remaining 588 lakes; Figure 60 maps 

measured and predicted alkalinity for all 811 lakes.  
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Figure 56: Residuals plots for the alkalinity model   

 

Figure 57: Statistical summary of the alkalinity model   
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Figure 58: Predicted vs measured alkalinity for the 223 lakes with measured alkalinity  
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Figure 59: Partial effects plots showing the effect of each variable on alkalinity 
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Figure 60: Map of measured and predicted alkalinity for all 811 lakes 
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Depth 

Mean depth estimates (in m) were provided by the EPA for a total of 584 WFD lakes; data for 

204 of these lakes were derived from the EPA’s 2013 monitored bathymetry database and the 

remaining 380 values were derived from the EPA’s typology data update in 2016. 

Using these data, a GAM regression model was developed to understand and quantify the 

causes of variation in mean depth from lake to lake. Specifically, mean depth was modelled 

as a function of the following predictor variables: 

• lake area (log10-transformed); 

• mean catchment slope (log10-transformed); 

• range in slope (50m buffer; log10-transformed; included as a main effect and also as 

an interaction with lake area); 

• SDI; and 

• easting/northing (to account for other sources of spatial variation). 

 

Depth was log10 transformed to satisfy the model’s assumptions of normally distributed errors 

and heterogeneous variables.  

Backward model selection using BIC was used to retain only the most relevant predictor 

variables. The final model included lake area, range in slope (50 m buffer), and SDI (Figure 

61; Figure 62). Overall, the model explained 41.4% of the variation in mean depth (Figure 63). 

Figure 64 illustrates the relationship between mean depth and each variable whilst holding the 

other variables constant at their mean values.  

The final model was used to predict mean depth for the remaining 227 lakes; Figure 65 maps 

measured and predicted mean depth for all 811 lakes.  
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Figure 61: Residuals plots for the mean depth model   

 

 

Figure 62: Statistical summary of the mean depth model   
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Figure 63: Predicted vs measured mean depth for the 584 lakes with measured depth 
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Figure 64: Partial effects plots showing the effect of each variable on mean depth 
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Figure 65: Map of measured and predicted mean depth for all 811 lakes 
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Residence time 

The average hydraulic residence time (in years) of water in each lake was calculated by 

dividing the estimated lake volume by the estimated annual outflow. Residence times ranged 

from less than 1 day (= 0.027 years) to 10 years (Figure 66). Figure 67 maps the spatial 

distribution of residence times. 

 

Figure 66: Distribution of estimated hydraulic residence times all 811 lakes 
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Figure 67: Map of hydraulic residence times for all 811 lakes 

 

Colour  

Colour measurements (Hazen) were available for 224 monitored lakes from the raw chemistry 

general physical conditions (GPC) master dataset supplied by the EPA. The colour 

measurements for the monitored lakes were averaged over a 3-year period from 2016-2018.  
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Using these data, a GAM regression model was developed to understand and quantify the 

causes of variation in colour from lake to lake. Specifically, colour was modelled as a function 

of the following predictor variables: 

• % peat (as an indicatory of the extent of peaty soils in the upstream catchment); 

• % limestone (as an indicatory of the geology of the upstream catchment); and 

• easting/northing (to account for other sources of spatial variation). 

Colour was log10 transformed to satisfy the model’s assumptions of normally distributed errors 

and heterogeneous variables.  

Backward model selection using BIC was used to retain only the most relevant predictor 

variables; in this case, all three variables were retained in the final model (Figure 68; Figure 

69). Overall, the model explained 60% of the variation in colour (Figure 70). Figure 71 

illustrates the relationship between colour and each variable whilst holding the other variables 

constant at their mean values.  

The final model was used to predict colour for the 587 unmonitored lakes; Figure 72 maps 

measured and predicted colour for all 811 lakes.  

 

 

Figure 68: Residuals plots for the colour model   
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Figure 69: Statistical summary of the colour model   

 

 

Figure 70: Predicted vs measured colour for the 224 monitored lakes 
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Figure 71: Partial effects plots showing the effect of each variable on colour 
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Figure 72: Map of measured and predicted colour for all 811 lakes 
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Shoreline development index (SDI) 

The SDI is a measure of the extent of littoral areas of a lake shoreline (Shilland et al., 2009). 

SDI is defined as the ratio of the shoreline length to the circumference of a circle of area equal 

to the surface area of the lake. SDI therefore takes values ≥1; the higher the SDI ratio, the 

more dendritic the lake shoreline is. 

Wynne and Donohue (2016) calculated the SDI for 759 WFD lakes using the EPA’s WFD lake 

water body layer to derive values for lake shoreline (km) and lake area (km2) and then 

calculating SDI as: 

𝑆𝐷𝐼 =  
𝑆ℎ𝑜𝑟𝑒𝑙𝑖𝑛𝑒

2√𝜋𝐴𝑟𝑒𝑎
 

Using these data, a GAM regression model was developed to predict SDI for the lakes with 

missing data values. SDI was modelled as a function of the easting/northing predictor variable. 

SDI was log10 transformed to satisfy the model’s assumptions of normally distributed errors 

and heterogeneous variables.  

The statistical model explained 17.1% of the variation in range in SDI (Figure 73; Figure 74; 

Figure 75). Figure 76 illustrates the relationship between SDI and easting/northing. 

The final model was used to predict SDI for the remaining 52 lakes; Figure 77 maps measured 

and predicted colour for all 811 lakes.  

 

Figure 73: Residuals plots for the SDI model   
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Figure 74: Statistical summary of the SDI model   

 

 

Figure 75: Predicted vs measured SDI for the 759 lakes with measured SDI values 
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Figure 76: Partial effects plot showing the effect of easting/northing on the SDI 
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Figure 77: Map of measured and predicted SDI for all 811 lakes
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Appendix 2  TP model  

 

 

Figure 78: Statistical summary of the TP model   

 

 

Figure 79: Residuals plots for the TP model   
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Figure 80: Comparison of residuals from the TP model for lakes in karst catchments (>25% 

karst geology) and non-karst catchments  

 

 

Figure 81: Comparison of residuals from the TP model for the 25 largest lakes and the rest
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Figure 82: Comparison of residuals from the TP model for the 12 WFD typology groups 
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Figure 83: Comparison of residuals from the TP model for the 32 river catchments



APEM Scientific Report P00008062 

 

July 2022 v3 – Final Report Page 116 

 

  

Figure 84: Map of residuals from the TP model showing the difference between measured and 

predicted log10 TP concentrations in monitored lakes 
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Table 8: Lakes with the top 10 largest positive and the top 10 largest negative residuals in 

the TP model 

 

Lake code 
Catchment 

area (km2) 
Lake name 

Measured 

TP 
Predicted TP 

Residual (log 

scale) 

NW_36_671 6.509 Egish 0.1654 0.0383 0.6348 

WE_33_1889 3.039 Cross 0.0568 0.0143 0.5987 

WE_32_474 1.878 Tully 0.0270 0.0096 0.4496 

NW_38_59 3.315 Kinny 0.0304 0.0109 0.4467 

WE_32_402 1.675 Beaghcauneen 0.0261 0.0097 0.4293 

WE_35_157 272.653 Templehouse 0.0532 0.0202 0.4198 

SH_26_661 2.764 Glinn 0.0418 0.0164 0.4063 

EA_10_28 1.455 Bray Lower 0.0233 0.0095 0.3895 

SW_20_148 5.827 Abisdealy 0.0545 0.0229 0.3759 

NW_01_102 10.379 Finn DL 0.0204 0.0088 0.3662 

WE_32_333 5.185 Enask 0.0076 0.0143 -0.2711 

WE_32_501 4.607 Fadda 0.0057 0.0106 -0.2730 

SH_27_120 51.044 Rosroe 0.0111 0.0209 -0.2732 

WE_34_405 5.662 Talt 0.0050 0.0095 -0.2786 

NB_06_198 0.57 Spring 0.0098 0.0188 -0.2859 

SH_24_90 1.321 Bleach 0.0082 0.0166 -0.3095 

WE_35_136 10.678 Easky 0.0061 0.0131 -0.3344 

NW_40_2 3.158 Fad Meendoran 0.0066 0.0147 -0.3491 

NW_36_272 0.214 Mushlin 0.0215 0.0516 -0.3805 

WE_33_1895 12.383 Keel MO 0.0092 0.0223 -0.3855 
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Appendix 3  Chlorophyll-a model  

 

 

Figure 85: Statistical summary of the chlorophyll-a model   

 

 

Figure 86: Residuals plots for the chlorophyll-a model   
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Figure 87: Comparison of residuals from the chlorophyll-a model for lakes in karst catchments 

(>25% karst geology) and non-karst catchments  

 

 

Figure 88: Comparison of residuals from the chlorophyll-a model for the 25 largest lakes and 

the rest
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Figure 89: Comparison of residuals from the chlorophyll-a model for the 12 WFD typology 

groups 
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Figure 90: Comparison of residuals from the chlorophyll-a model for the 32 river catchments 
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Figure 91: Map of residuals from the chlorophyll-a model showing the difference between 

measured and predicted chlorophyll-a EQR in monitored lakes
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Table 9: Lakes with the top 10 largest positive and the top 10 negative residuals in the 

chlorophyll-a model 

 

Lake code 
Catchment 

area (km2) 
Lake name Measured TP Predicted TP 

Log 

residuals 

NW_36_724 254.893 Gowna South 0.8254 0.5677 0.2577 

EA_10_25 20.049 Tay 1.0975 0.8600 0.2375 

WE_35_158 363.195 Gill SO 1.0354 0.8020 0.2334 

SH_26_706 2.772 Grange 0.7716 0.5409 0.2307 

NW_36_647 122.615 White 

Rockcorry 

0.6967 0.4795 0.2172 

WE_30_665a 875.509 Mask 1.1576 0.9415 0.2161 

EA_10_28 1.455 Bray Lower 0.9210 0.7112 0.2098 

SW_20_148 5.827 Abisdealy 0.6389 0.4340 0.2048 

NW_36_672 3339.332 Erne Upper 0.7562 0.5515 0.2048 

NW_01_102 10.379 Finn DL 0.8558 0.6583 0.1975 

NW_36_618 1.403 Atrain 0.4368 0.6123 -0.1755 

NW_36_723 39.331 Gowna North 0.2633 0.4508 -0.1875 

SW_21_457 103.908 Currane 0.6240 0.8131 -0.1891 

NB_06_209 0.266 Brackan 0.4015 0.6148 -0.2134 

NW_36_665 21.162 Scur 0.3988 0.6155 -0.2167 

NW_36_614 2.179 Drumlaheen 0.5064 0.7310 -0.2247 

NW_36_715 4.794 Golagh 0.5524 0.7819 -0.2295 

SW_22_208 11.168 Acoose 0.5994 0.8368 -0.2374 

SH_26_681 0.58 Acres 0.2634 0.5822 -0.3188 

SW_19_4 106.956 Allua 0.3707 0.6945 -0.3239 
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Appendix 4  Macrophytes model  

 

 

Figure 92: Statistical summary of the macrophytes model   

 

 

Figure 93: Residuals plots for the macrophytes model   
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Figure 94: Comparison of residuals from the macrophytes model for lakes in karst catchments 

(>25% karst geology) and non-karst catchments  

 

 
Figure 95: Comparison of residuals from the macrophytes model for the 25 largest lakes and 

the remaining lakes 
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Figure 96: Comparison of residuals from the macrophytes model for the 12 WFD typology 

groups 
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Figure 97: Comparison of residuals from the macrophytes model for the 32 river catchments 
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Figure 98: Map of residuals from the macrophytes model showing the difference between 

measured and predicted macrophytes EQR in monitored lakes 
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Table 10: Lakes with the top 10 largest positive and the top 10 largest negative residuals in 

the macrophytes model 

 

Lake code 
Catchment 

area (km2) 
Lake name 

Measured 

TP 
Predicted TP 

Log 

residuals 

WE_33_1889 3.039 Cross 0.8000 0.5505 0.2495 

SW_20_150 1.279 Ballin CK 0.8171 0.5960 0.2211 

EA_07_242 0.491 Acurry 0.7091 0.5040 0.2051 

NW_01_102 10.379 Finn DL 0.8714 0.6964 0.1751 

SW_20_153 3.013 Coolkellure 0.8057 0.6343 0.1714 

WE_32_479 5.555 Ballynakill 0.9000 0.7392 0.1608 

NW_36_432 1.019 Ardan 0.6409 0.4971 0.1438 

SH_26_747b 1817.192 Boderg 0.5615 0.4206 0.1409 

SH_28_87 0.898 Naminna 0.8571 0.7167 0.1404 

NW_36_564 76.996 Farnharn 0.4808 0.3422 0.1386 

EA_07_267 5.312 Skeagh Upper 0.1952 0.3681 -0.1729 

NB_06_56 161.61 Muckno 0.1238 0.2987 -0.1749 

WE_35_139 39.928 Glencar 0.4615 0.6405 -0.1789 

WE_33_1892 1.826 Acorrymore 0.6636 0.8671 -0.2035 

EA_10_10 35.502 Varty  Lower 0.4423 0.6486 -0.2063 

SW_21_444 7.516 Glenbeg 0.6909 0.9075 -0.2165 

WE_35_157 272.653 Templehouse 0.1238 0.3601 -0.2363 

NW_38_576 3.59 Keel Crotty 0.5000 0.7681 -0.2681 

NW_38_649 0.924 Salt 0.5192 0.7950 -0.2758 

WE_30_340 77.995 Ballyquirke 0.1714 0.5012 -0.3298 
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Appendix 5  Averaging status class results  

 

The EPA currently adopts the ‘one-out, all-out’ method of using the worst performing quality 

element to determine the overall status of each lake water body. However, WFD guidance 

also permits the use of averaging for quality elements that respond to the same pressure. The 

three quality elements analysed in this study – TP, chlorophyll-a and macrophytes – all 

respond to nutrient enrichment plus the three GAM models are based on the same datasets 

and are inter-linked, and so there is an argument that the results should be averaged because 

they’re providing similar assessments of trophic status. 

For comparative purposes, the overall status class results presented in Section 3.5 (based on 

one-out, all-out method), were compared with those produced by averaging the status classes 

for TP, chlorophyll-a and macrophytes. In practice, averaging was achieved by converting the 

five WFD status classes (High to Bad) to numerical values (1 to 5), averaging the  numerical 

values, rounding to the nearest integer, and then converting  back to the corresponding WFD 

status class, as illustrated in Table 11 below. In most cases, this averaging method gives a 

higher (better) assessment of overall status than the one-out, all-out method, and is very 

similar to finding the median (middle) of the three status classes. 

 

Table 11: Comparison of methods for combining results across three quality elements to 

derive an overall status class  

Status classes of individual 
quality elements 

Scores of 
individual 

quality 
elements 

Average 
score 

Average 
status 

Worst 
(One-out, 

all-out) 
status 

Median 
status 

Moderate, Moderate, Moderate 3, 3, 3 3.00 Moderate Moderate Moderate 

Good, Moderate, Moderate 2, 3, 3 2.67 Moderate Moderate Moderate 

Moderate, Moderate, Poor 3, 3, 4 3.33 Moderate Poor Moderate 

High, Moderate, Moderate 1, 3, 3 2.33 Good Moderate Moderate 

Moderate, Moderate, Bad 3, 3, 5 3.67 Poor Bad Moderate 

Good, Moderate, Poor 2, 3, 4 3.00 Moderate Poor Moderate 

Good, Moderate, Bad 2, 3, 5 3.33 Moderate Bad Moderate 

High, Moderate, Poor 1, 3, 4 2.67 Moderate Poor Moderate 

High, Moderate, Bad 1, 3, 5 3.00 Moderate Bad Moderate 

High, Good, Bad 1, 2, 5 2.67 Moderate Bad Good 

High, Poor, Bad  1, 4, 5 3.33 Moderate Bad Poor 
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As expected, the averaging method gives substantially higher status class results (80% at 

High or Good status) than the one-out, all-out method (69% at High or Good status) for the 

811 lakes considered in this project (Error! Reference source not found.).  

 

(a) 

 

(b) 

 

Figure 99: Overall status calculated using the one-out, all-out (a) and averaging (b) method 


