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Executive Summary

Context

Marine ecosystems are undergoing unprecedented 
change, with natural capital declining to the point that 
benefits accrued by humans are at risk. In parallel, 
demands for natural resources and ecosystem 
services are increasing. Ecosystem change can occur 
abruptly in a non-linear fashion until a tipping point 
is reached and the ecosystem shifts to an alternative 
state. After a regime shift, the ecosystem may not 
return to its previous state, even when an external 
pressure is removed or reduced. This makes it difficult 
to predict ecosystem responses to human impacts 
and to identify appropriate indicators and targets for 
ecosystem-based management, as is required under 
environmental legal instruments such as the Marine 
Strategy Framework Directive.

The analysis of long-term environmental and biological 
datasets provides a historical context for ecosystem 
change, allowing natural short-term variability to be 
separated from long-term trends; regime shifts to be 
detected; and links between ecosystem components to 
be identified. Ultimately, these data can provide early 
warning indicators to signal an approaching threshold 
before it is reached, allowing management to respond 
to avert a regime shift.

Objectives

This project aimed to collate and integrate datasets 
describing the Celtic Sea ecosystem (as defined by 
the geographic area of the Celtic Sea), to use these 
data to quantify how physical and biological ecosystem 
components have changed in recent decades and to 
establish relationships between ecosystem responses 
and external pressures. A primary objective was to 
develop analytical tools for detecting step changes and 
to use these tools to determine if ecological tipping 
points have occurred in the Celtic Sea ecosystem.

Progress Made

The project database provides a valuable resource 
for exploring ecological change, adding value to 
previously collected data and integrating data 

generated within the project. These data describe 
the physical environment of the Celtic Sea from 1900 
to 2018 (wind conditions, sea surface temperature, 
ocean salinity and climatic indices) and capture 
change across multiple trophic levels (phytoplankton, 
zooplankton, 14 fish species, seabirds and turtles) 
from the 1950s to the present. Some data originated 
from ocean monitoring infrastructure and scientific 
surveys; others were obtained from opportunistic 
records and citizen science initiatives. Data generated 
for scientific assessment of commercial fisheries 
provided population-level estimates of abundance, 
growth and fishing mortality. Measurements of 
growth marks in fish otoliths (ear stones) were used 
to examine multidecadal changes in growth across 
several species.

The project has developed national capacity in the 
statistical analysis of ecological time series. Methods 
were applied and developed within the project to 
identify common trends across multiple time series, 
to model complex relationships between drivers and 
an ecological response, to detect change in highly 
variable time series, and to isolate a response to 
an external driver from other sources of variability. 
Statistical tools were used to account for sources of 
error and bias inherent in data collected by human 
observers as part of citizen science initiatives. 
Significant progress was made in the early detection 
of ecosystem change points using the Bayesian online 
change-point detection (BOCPD) algorithm.

Key Findings

Analysis of the time series showed that there 
have been considerable changes in the physical 
environment and across multiple trophic levels in the 
Celtic Sea over the last 50 years, many of which are 
associated with ocean warming.

The abundance of jellyfish and their predators 
has increased

As the Celtic Sea environment changes some species 
are increasing in abundance; Continuous Plankton 
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Recorder (CPR) data showed a pronounced increase 
in the abundance of gelatinous zooplankton (jellyfish). 
Increasing jellyfish numbers are thought to indicate 
an ecosystem shift that may be triggered by climate 
change, overfishing, eutrophication, translocation 
and habitat modification.1 Field survey results reveal 
the importance of oceanographic features in the 
Celtic Sea for structuring gelatinous zooplankton 
communities and provide estimates of the relative 
biomass of different taxa within this group; at times, 
siphonophores contribute up to 42% of the total 
zooplankton biomass (mg C m−3). The warm water 
gelatinous community of the Celtic Sea typically had a 
~40% greater gelatinous biomass than the cold water 
gelatinous community and therefore jellyfish in warm 
water communities may have a greater predatory 
impact on commercial fish species. These baseline 
data are important for evaluating potential impacts 
of increasing jellyfish abundance. The change-point 
analysis showed that there was a significant step 
change in the jellyfish time series in the late 1990s. 
This coincided with an increase in the occurrence of 
sunfish, which are predators of jellyfish; however, the 
analysis suggests that the increase in occurrence of 
sunfish is linked to warming rather than increased 
food supply.

Changes in wind-driven circulation patterns 
reduce the delivery of herring to known 
nursery areas

Wind patterns in the Celtic Sea have changed since 
the 1960s, with the prevailing south-west winds 
becoming more frequent and with evidence of a 
change point around 1990. Simulation of the dispersal 
of herring larvae from a spawning ground in the Celtic 
Sea using oceanographic modelling shows that, as the 
strength and frequency of prevailing winds increase, 
more larvae are dispersed away from Celtic Sea 
retention areas and areas that are known to support 
juvenile growth and survival. Changes in wind patterns 
are therefore likely to impact on the delivery of herring 
larvae to nursery areas, with potential consequences 
for early life survival and recruitment to adult fisheries. 
Other dispersing organisms could also potentially 
be affected.

1	� Richardson, A.J., et al., 2009. The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. 
Trends in Ecology & Evolution 24: 312–322. https://doi.org/10.1016/j.tree.2009.01.010

Fish growth rates are changing, with some 
species showing declines

In recent decades several commercial fish 
species have shown changes in growth that have 
consequences for stock productivity and may indicate 
a change in ecosystem structure and functioning. 
These changes are reflected in individual fish length 
and otolith measurements, and in population mean 
weights at age. Most notably, there was a sharp 
reduction in size at age of Celtic Sea herring from the 
mid-1970s to the 2000s, which was most strongly and 
non-linearly associated with temperature; the length 
of three-winter-ring (4-year-old) herring decreases 
sharply above a threshold temperature of 14.1°C. 
There was also evidence of density dependence 
(size at age was negatively correlated with population 
size) and a positive relationship with food availability. 
Weight-at-age trends varied between species but 
overall there was a reduction in fish size in the Celtic 
Sea that was associated with increases in sea surface 
temperature. Archived otolith collections proved 
valuable for describing temporal trends in growth of 
Celtic Sea fish species over extended time periods 
and for investigating associations with environmental, 
population and fishing-related variables. After 
accounting for individual and age-related effects, 
annual growth signals were significantly correlated 
across species (herring, plaice and haddock), which 
may indicate a common response to environmental 
change.

Change points are detected across multiple 
taxa and trophic levels, but no simultaneous 
regime shift

The BOCPD algorithm provided quantified evidence 
for the occurrence of change points across the Celtic 
Sea ecosystem. The BOCPD algorithm is appropriate 
for ecosystem monitoring because it estimates the 
probability that a change point has occurred at each 
year in a time series. Abrupt changes are detected 
quickly, providing a means for early detection. The 
model identified periods of coherent environmental 
change during the late 1980s and mid-1990s 
(temperature, salinity, wind patterns, climatic indices). 
For other ecosystem components, important changes 
occurred but were not tightly coupled or apparently 

https://doi.org/10.1016/j.tree.2009.01.010
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cascading across series; instead, the timing of step 
changes varied across the time series. Although a 
simultaneous regime shift across the ecosystem was 
not detected, there was strong evidence that change 
occurred across multiple taxa and trophic levels in the 
Celtic Sea ecosystem over the last 50 years, which 
has important consequences for management.

Summary Recommendations

	● Sustain long-term datasets. A balanced and 
integrated ocean-observing system is needed to 
support ecosystem management.2 At a national 
level, long-term support should be provided to 
maintain extended ecological time series and to 
integrate them with data resources from national 
monitoring programmes.

	● Implement statistical methods for handling 
observer time series. Citizen science initiatives 
enhance observation capacity while also 
increasing public engagement with science. To 
maximise value from national observer datasets, 
appropriate statistical methods should be used 
to account for inherent sources of imprecision 
and bias and effectively detect the underlying 
long-term trends. This can be achieved by 
involving statisticians in the design of citizen 
science initiatives and the subsequent analysis of 
time series.

	● Preserve biochronological material from national 
fisheries monitoring programmes. Fish otoliths and 
scales contain detailed individual growth histories 
that can be statistically analysed to detect 
changes in demographic properties and identify 
their causes. Otoliths and scales are collected 
annually as part of national fisheries monitoring 
programmes to derive individual age estimates, 
which are subsequently aggregated to produce 
population-level estimates of size and abundance 
at age; the rich individual-level data that they 
contain are under-utilised and systems for curating 
the material are lacking. It is recommended that 
the preservation of these valuable archives is 
prioritised to make them available for research 
into climate- and fishing-related influences on fish 
demographics.

2	� Benedetti-Cecchi, L., et al. (eds), Future Science Brief 3 of the European Marine Board. European Marine Board, Ostend, Belgium.

3	� Lindstrom, E., et al., 2012. A Framework for Ocean Observing. By the Task Team for an Integrated Framework for Sustained 
Ocean Observing, UNESCO 2012 (revised in 2017), IOC/INF-1284 rev.2. Available online: https://unesdoc.unesco.org/ark:/48223/
pf0000211260 (accessed 16 April 2020).

	● Monitor changes in wind-driven circulation and 
larval dispersal. The Climate Change Sectoral 
Adaptation plan for the seafood sector states that 
“continued monitoring of the spatial distributions 
of commercially exploited fish stocks is essential 
to support future management”. This study 
demonstrates how changes in wind-driven 
circulation can influence dispersal to nursery 
grounds, with consequences for the distribution 
of adult stocks. Oceanographic simulations 
coupled with field studies of larval distribution can 
provide an early warning of potential changes 
to the distribution of adult fish stocks and 
should be incorporated into fisheries monitoring 
programmes.

	● Monitor changes in jellyfish abundance and 
associated food web effects. The pronounced 
increase in the abundance of some jellyfish 
groups in the Celtic Sea since the late 1990s 
has consequences for the food web structure 
and ecosystem service provisioning, particularly 
as these groups can make a substantial 
contribution to zooplankton biomass in the Celtic 
Sea. It is recommended that some measure of 
the contribution of jellyfish to zooplankton be 
incorporated into food web indicators as these are 
developed. This could be provided by CPR time 
series in combination with dedicated programmes 
for monitoring larger species of jellyfish.

	● Incorporate change-point detection into ecosystem 
monitoring. The BOCPD framework presented 
here provides a means to condense high volumes 
of complex ecosystem data into a single coherent 
analysis of ecosystem change points, allowing 
shifts to be rapidly identified and effectively 
communicated at various levels of aggregation. 
Incorporation into ongoing monitoring programmes 
would ensure that data are continually updated 
and results reported. This approach can be 
applied to ecosystem indicators that have already 
been prioritised for monitoring and could be 
used to identify variables that display significant 
shifts with societal consequences and might 
warrant inclusion within a Framework for Ocean 
Observing.3

https://unesdoc.unesco.org/ark:/48223/pf0000211260
https://unesdoc.unesco.org/ark:/48223/pf0000211260
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1	 Introduction

1.1	 Ecosystem Change, Thresholds 
and Tipping Points

“Ecosystem services” are the direct and indirect 
benefits that humans derive from natural capital and 
ecosystem functions, including food, materials, nutrient 
cycling, climate regulation, and recreational and 
cultural benefits. Although critical to human welfare 
and of immense economic importance (Costanza et 
al., 1997), continued provision of these services is 
threatened by human impacts on natural systems, 
resulting in alterations to ecosystem functioning that 
may be accelerating, abrupt and irreversible (UNEP, 
2006). There is mounting evidence that natural 
capital is declining to the point that the benefits 
accrued by humans are at risk (Mace et al., 2015). 
Therefore, effective management of natural capital 
urgently requires an improved understanding of how 
ecosystems change in response to pressures, as 
well as development of monitoring tools to detect and 
predict change (Hughes et al., 2005).

Ecosystems are characteristically dynamic and subject 
to change, displaying small-scale variability overlaid 
on long-term trends (Stenseth et al., 2003; Edwards 
et al., 2010; McQuatters-Gollop, 2012). Often, change 
is non-linear and responses to external pressures can 
be abrupt, leading to sudden changes in ecosystem 
structure or function, known as ecological thresholds 
(Groffman et al., 2006). Intrinsic properties of the 
system may accelerate change through positive 
feedback, pushing it to an alternative state; in this 
situation, the threshold is referred to as a tipping point 
(van Nes et al., 2016). After a tipping point is reached, 
an ecosystem may undergo a regime shift: a sudden 
and persistent transition to an alternative stable state 
occurring across multiple trophic levels (Lees et al., 
2006).

The occurrence of regime shifts is well documented 
in aquatic and terrestrial systems (Folke et al., 2004; 
Moellmann and Diekmann, 2012). Although the 
underlying mechanisms are not always clear, regime 
shifts are generally thought to occur in response 
to external pressures, such as climate change, 
intensive harvesting, eutrophication and the presence 

of invasive species, or as a result of the internal 
properties of the system itself (Andersen et al., 2009). 
Regime shifts impact on multiple trophic levels, often 
with severe consequences for ecosystem service 
provision (e.g. fish stock collapse, desertification, loss 
of water quality) and thus for human economies and 
society (Biggs et al., 2009; Eason et al., 2014). When 
an ecosystem reaches an ecological threshold, small 
changes in an external pressure can produce a large 
response in the ecosystem (Groffman et al., 2006). 
Critically for management, reversing a regime shift 
may require that the pressure is reduced well below 
the levels that existed prior to the system reaching 
the tipping point (“hysteresis”) (Scheffer et al., 2001; 
Suding et al., 2004; Layer et al., 2011).

1.2	 Ecosystem-based Management in 
the Context of Change

Environmental legal instruments, such as the Marine 
Strategy Framework Directive (MSFD) (2008/56/EC; 
EU, 2008), prioritise holistic ecosystem-based 
management approaches. The MSFD seeks to 
achieve Good Environmental Status (GES) of Europe’s 
seas through the implementation of appropriate targets 
and indicators, established by individual Member 
States. The dynamic nature of marine ecosystems 
makes the determination of GES, the identification 
of appropriate indicators and the setting of targets 
particularly challenging (McQuatters-Gollop, 2012). 
The analysis of long-term environmental and biological 
datasets can support the implementation of the MSFD 
and other ecosystem management approaches by 
providing a historical context for changes in indicators, 
allowing natural short-term variability to be separated 
from long-term trends, regime shifts to be detected, 
and links between ecosystem components to be 
identified (Edwards et al., 2010; McQuatters-Gollop, 
2012; Boero et al., 2015). The ultimate goal for 
researchers, managers and policymakers is to develop 
early warning indicators that signal an approaching 
threshold before it is reached, allowing management to 
respond to avert a regime shift (Scheffer et al., 2012; 
Moss et al., 2013; Burthe et al., 2016).
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1.3	 Marine Ecosystem Time Series

Despite their value for supporting evidence-based 
decision-making, long-term datasets for the marine 
environment are rare relative to terrestrial systems. 
Data describing change across multiple trophic 
levels over broad spatial scales in the open ocean 
are particularly lacking (Edwards et al., 2010). The 
maintenance of extended time series is threatened 
by irregular funding, leading to gaps in spatial and 
temporal coverage (Barner et al., 2017). A lack of 
co-ordination across monitoring stations can produce 
variability in methodologies, sampling frequency 
and data quality (Boero et al., 2015). Ecological 
data are inherently heterogeneous and complex 
and so even consistent reliable time series can be 
highly variable, can be subject to measurement 
error and may contain a high proportion of zero 
observations. Notwithstanding these challenges, 
advances in information technology have increased 
the accessibility of large datasets while developments 
in data management and modelling provide tools for 
detecting signals in complex and “noisy” data (Myers 
and Mertz, 1998; Zuur et al., 2007; Farley et al., 2018). 
Of particular importance are statistical modelling 
developments providing probabilistic algorithms 
capable of deciphering signal from noisy observations 
– methods often borrowed from and developed in 
the engineering field (Harvey, 1990; Clark, 2007; 
Aeberhard et al., 2018). Increasingly, long-term 
datasets are directly informing marine ecosystem 
management, with the most notable example being the 
Continuous Plankton Recorder (CPR) survey, operated 
by the Sir Alister Hardy Foundation for Ocean Science 
(SAHFOS) (Brander et al., 2003; Stevens et al., 
2006; McQuatters-Gollop, 2012). Applying advanced 
detection methodologies to such valuable long-term 
datasets represents an exciting opportunity to 
contribute to understanding change.

1.4	 Investigating Change in the Celtic 
Sea Ecosystem

The Celtic Sea is a productive shelf sea ecosystem 
(Joint et al., 2001) that has a high diversity of 
invertebrate and fish species and that supports many 
commercial fisheries (Pinnegar et al., 2002; Martinez 
et al., 2013). It is an important region for seabirds 
(Cox et al., 2016; Lambert et al., 2017; Waggitt et 
al., 2018) and marine mammals (Berrow et al., 2010; 

Leeney et al., 2012; Lambert et al., 2017). The diverse 
zooplankton community of the Celtic Sea is dominated 
by copepods (Williams et al., 1994), which have shown 
fluctuations in abundance and distribution over time 
(Beaugrand et al., 2000). Fishing activity is a key 
anthropogenic pressure on the Celtic Sea ecosystem. 
Fishing efforts in the region intensified dramatically 
after 1970, with a peak in the 1990s and a subsequent 
decline (Gascuel et al., 2016). The impacts of 
intensive harvesting are evidenced by reductions in 
biomass, species composition and size structure of 
fish populations (Pinnegar et al., 2002; Guenette and 
Gascuel, 2012). The demand for resources and space 
in the Celtic Sea is increasing because of growth in 
offshore windfarm development, demand for sand 
and gravel abstraction, marine transport, tourism and 
leisure activity and aquaculture, and the potential 
expansion of oil and gas extraction (Roxburgh, 2012). 
Against this backdrop of competing stakeholder 
demands, it is imperative that policymakers and 
managers are equipped with knowledge of long-
term changes in the Celtic Sea ecosystem and the 
relationships between key ecosystem components. 
There is a need for greater integration of available 
datasets describing change in the system, as well 
as analytical tools to identify step changes and 
potential regime shifts that may impact on ecosystem 
management targets.

In the North-East Atlantic in the mid-1990s, 
pronounced atmospheric and oceanographic changes 
coincided with increases in temperature, salinity 
and sea ice melting (Alheit et al., 2019). This period 
marked the beginning of a prolonged warming period 
associated with anthropogenic climate change overlaid 
on a positive phase of the Atlantic Multi-decadal 
Oscillation (AMO) index (Macias et al., 2013; Ting et 
al., 2014). These changes have been associated with 
a regime shift in the North Sea ecosystem (Alvarez-
Fernandez et al., 2012; Beaugrand et al., 2014), 
as evidenced by abrupt changes in distribution and 
abundance across trophic levels, from phytoplankton 
to top predators, in the mid-1990s (reviewed in Alheit 
et al., 2014). Changes in other parts of the North-East 
Atlantic have not been as widely studied; however, 
there is evidence that biogeographic shifts in certain 
fish (Poulard and Blanchard, 2005; Coad et al., 2014) 
and plankton (Lindley and Daykin, 2005; Valde et al., 
2007; Beaugrand et al., 2009) species occurred during 
the mid-1990s across a broad area, from the Bay of 
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Biscay to the Celtic Sea and the area to the west of 
Britain and Ireland. Abrupt change across multiple 
trophic levels led Beaugrand and Reid (2012) and 
Luczak et al. (2011) to propose that an ecosystem 
regime shift occurred across the North-East Atlantic 
during this period. However, a finding of weak climate 
signals across four trophic levels (phytoplankton, 
zooplankton, mid-trophic-level fish and seabirds) 
prompted Lauria et al. (2012) to suggest that impacts 
on the Celtic Sea ecosystem are not as marked as 
in the North Sea, and to call for more research at 
regional scales.

1.5	 Objectives

	● Collate and integrate existing data resources for 
the Celtic Sea ecosystem.

	● Build empirical understanding of relationships 
between pressures and ecosystem structure and 
functioning.

	● Develop simulation and modelling tools to 
interrogate temporal trends and detect step 
changes or ecological tipping points.

1.6	 The Study Approach

This study addressed current knowledge gaps using 
the following approach:

	● Data access. Available datasets that describe 
the physical environment and key biological taxa 
across multiple trophic levels in the Celtic Sea 
were consolidated into a coherent database and 
key temporal trends were visually examined.

	● Ecosystem tools. Analytical tools appropriate for 
ecological time series were developed to:

	– aggregate large complex datasets and align 
variables in time and space;

	– visualise broad trends across time series;
	– deal with missing data/sources of bias;
	– determine relationships with multiple interacting 

drivers;
	– partition endogenous and exogenous sources 

of variation;
	– distinguish between trends and step changes.

	● Boom/bust cycles. Increases in jellyfish have been 
associated with ecosystem change and regime 
shifts elsewhere (Akoglu et al., 2014; Hosia et al., 
2014). Historical time series and contemporary 
surveys were used to:

	– estimate biomass and evaluate the importance 
of key jellyfish species in the Celtic Sea;

	– examine relationships between the physical 
environment and jellyfish abundance/
distribution;

	– investigate temporal changes in the abundance 
of jellyfish and their predators.

	● Ecosystem dynamics. The statistical tools 
developed within the project were applied to 
the available data for the Celtic Sea to address 
specific hypotheses relating to:

	– temporal trends in growth and productivity;
	– synchronicity across species;
	– relationships with external drivers;
	– the occurrence of step changes/tipping points.
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2	 Consolidating Data Resources for the Celtic Sea 
Ecosystem

2.1	 The Study Area

In the context of this study, the “Celtic Sea” generally 
refers to the geographic area shown by the blue box in 
Figure 2.1. Data from overlapping International Council 
for the Exploration of the Sea (ICES) management 
areas were included in some analyses (area 7e–7k). 
Widely distributed fish stocks whose distribution 
includes the Celtic Sea were considered. OSPAR 
Commission indicators for the broader “Celtic Seas 
ecoregion”, which includes the Celtic Sea, the Irish 
Sea and the Malin Shelf areas, were also included in 
the analyses of step changes (see Chapter 7). The 
same delineation was used within the MSFD to define 
the “Celtic Seas” area.

2.2	 Data Access

Data used in the project are housed within a 
Microsoft Access database, linked to the R software 
environment (R Core Team, 2018) through the 
RODBC (v. 1.3-15) package (Ripley and Lapsley, 
2017). Data processing and analysis were conducted 
using the R (R Core Team, 2018) and Python 
(Python Software Foundation, 2019) programming 
languages. Sample scripts to support the analyses 
presented in the report are made available through 
the GitHub repository (links provided within report). 
Data sources used within the project are detailed in 
Table 2.1.

Figure 2.1. Map of the study location. The blue box indicates the area defined as the Celtic Sea for the 
purpose of this study. ICES fisheries management divisions are marked in grey. CPR standard areas are 
shaded in blue (C3, C4, D4).
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2.3	 Broad Temporal Trends in the 
Celtic Sea Ecosystem

2.3.1	 The physical environment

Broad temporal trends in the physical environment are 
visualised in Figure 2.2 and briefly described below:

	● Temperature. Sea surface temperature (SST) in 
the Celtic Sea shows an increasing trend since 
1900, with a sharp rise in the rate of increase after 
about 1990. Water column temperatures and the 
mean annual latitude of the 13°C isotherm reflect 
this warming trend.

	● Salinity. There was a slight increase in salinities 
after 1990, which was most pronounced at depth, 
suggesting changes in the movement of open 
water masses. Salinity at a depth of 200 m showed 
a sharp decline after 2012, which was not evident 
at shallower depths.

	● Wind. Wind conditions fluctuated across the 
period examined. The strength of the prevailing 
south-west winds appeared to cycle, increasing 
from the 1960s to the mid-1980s, then 
decreasing until 2000 and increasing towards 
the end of the time series. Across the period 
examined there was a decrease in the variability 
of the wind direction: the prevailing south-west 
winds became more frequent. An extreme value 
in the time series of south-west winds (total count 
in hours) reflected a period of storminess in 
February 1990.

	● Climatic indices. Three broadscale climatic 
indices, reflecting conditions across the Atlantic, 
were included in the analyses: the AMO, the North 
Atlantic Oscillation (NAO) and the Sub-Polar Gyre 
(SPG) Index.

The AMO is the 10-year running mean of North Atlantic 
SST anomalies, detrended to remove the effect of 
anthropogenic warming (Enfield et al., 2001). The 
AMO moved from a negative to a positive phase in 
the mid-1920s, returning to a negative phase in the 
1960s and subsequently increasing. AMO conditions 
have been positive since the late 1990s. As well as 
reflecting temperature conditions, oscillations between 
warm and cold phases of the AMO are associated with 
changes in ocean circulation patterns and advection of 
water masses (Alheit et al., 2014).

The NAO (the difference in the atmospheric pressure 
anomalies between the Azores and Iceland; Jones et 
al., 1997) was in a negative phase in the 1930s, 1960s 
and 2000s. An extreme low in 2010 reflected unusually 
cold conditions in Europe in the winter of 2009/2010. 
The index increased subsequently and is currently in 
a positive phase. A positive NAO is linked to higher 
temperatures and strong winter storms in the North-
East Atlantic, whereas colder, calmer conditions are 
observed during negative phases (Hurrell, 1995).

The SPG is a cyclonic gyre encompassing the North 
Atlantic, East Greenland and Labrador Currents. 
Changes in the extent and strength of the SPG have 
been linked to changes in circulation and marine 
ecosystem productivity. Since the mid-1990s, the 
SPG has declined steeply, reflecting a contraction and 
weakening of the gyre.

2.3.2	 Plankton communities

Indices of abundance for phytoplankton and various 
zooplankton groups were obtained from the CPR 
database maintained by SAHFOS (see details in 
Table 2.1). Broad temporal trends are displayed in 
Figure 2.3 and described briefly below:

	● Phytoplankton. The Phytoplankton Colour 
Index (PCI) provides a semi-quantitative index 
of phytoplankton abundance, based on the 
greenness of the silk mesh on which the sample 
is collected. The four PCI categories (no green, 
NG; very pale green, VPG; pale green, PG; 
and green, G) have been assigned numerical 
values on a ratio scale corresponding to relative 
chlorophyll a concentrations in acetone extracts 
from the silk mesh (NG = 0, VPG = 1, PG = 2 and 
G = 6.5) (Colebrook, 1979). These categories 
correspond to mean chlorophyll a concentrations 
in each sample (10 nautical miles of tow) of 
0.16 µg for NG, 5.05 µg for VPG, 11.94 µg for 
PG and 23.16 µg for G (Raitsos et al., 2013). 
Analysis of PCI values of samples from CPR area 
D4 (Celtic Sea) show an increase in estimated 
chlorophyll a concentration after 1978, with 
the proportion of samples in category 1 (VPG) 
increasing relative to the proportion of samples 
in category 0 (NG). This suggests an overall 
increase in phytoplankton abundance over 
that period.
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	● Zooplankton. Monthly mean abundance estimates 
(numbers per sample) were seasonally detrended 
and annual abundance anomalies were calculated 
across selected zooplankton groups:

	– Copepods. The abundance of copepods of 
> 2 mm (total eye-count copepods) showed a 
sharp decrease during the 1960s and declined 
further after 1990. This group includes the 
cold water species Calanus finmarchicus, 
which declined in abundance from the late 
1980s before increasing again after 2008. The 
warm water species C. helgolandicus is also 
included, which has shown a slight increase 
in abundance since 1990. The abundance 
of Paracalanus and Pseudocalanus species 
declined from the late 1980s.

	– Malacostraca. Trends were examined across 
two groups: the Hyperiidea (a suborder of 
the order Amphipoda) and Euphausiacea 
(krill). The abundance of Hyperiidea showed 
an increase in the last 3 years of the time 
series (2011–2014) but otherwise fluctuated 
around the time series mean. The abundance 
of Euphausiacea declined during the 1960s, 
with a slight increase towards the end of the 
time series.

	– Gelatinous zooplankton. Abundance 
anomalies across several groups of gelatinous 
zooplankton showed pronounced increases 
across the time period examined. The 
abundance of Cnidaria increased during the 
1970s and 1980s and from 1998 to 2016. The 
Siphonophora (an order within the phylum 
Cnidaria) were present in very low abundance 
before 2000 and showed a marked increase 
after that. The abundance of organisms in the 
class Thaliacea increased during the 2000s. 
The Doliolidae (a family of tunicates within the 
order Doliolida and class Thaliacea) showed 
increases in abundance in the 1980s and in 
the period 2008–2016. Increases were also 
observed in the Salpidae family during the 
1980s and from 2000 to 2016 (not shown here 
but included in the analysis in Chapter 7).

2.3.3	 Fisheries

Data describing trends across 17 commercial fish 
stocks (14 species) were obtained from the ICES 
stock assessment database and working group 

reports (Table 2.2). These data included estimates 
of abundance (spawning stock biomass, SSB; total 
stock biomass, TSB; number of recruits), growth 
(weight at age, length at age) and fishing mortality (F). 
Broad temporal trends for four species are shown in 
Figure 2.4.

	● Herring. SSB and recruitment trends show 
the dramatic decline in the Celtic Sea herring 
population that occurred in the 1970s and 
led to the collapse of the fishery. Abundance 
subsequently fluctuated, returning to low levels 
in the early 2000s, with some recovery in the 
following decade. Growth rates increased during 
the 1960s and 1970s and then declined markedly 
during the 1980s, without recovering; this is 
apparent in the mean weight at age 3 trend.

	● Cod. Recruitment, SSB and growth rates have 
been declining since the 1990s.

	● Haddock. This stock shows strong fluctuations 
in recruitment and stock size, with a large 
recruitment pulse in 2009. Growth rates show a 
decline during the late 1990s and early 2000s 
followed by an increase in more recent years.

	● Plaice (7j–k). There was a marked decline in SSB 
and recruitment during the mid-1990s. The trend 
in mean weight at age 5 indicates some decline in 
growth during the same period.

2.3.4	 Seabirds

Colony count data and estimates of breeding 
success were obtained from the Seabird Monitoring 
Programme database co-ordinated by the Joint Nature 
Conservation Committee (JNCC). Trends for three 
species (common guillemot, kittiwake and razorbill) 
are shown in Figure 2.5. Count data (individuals on 
land for guillemot and razorbill; occupied nests for 
kittiwake) were obtained from six coastal sites in the 
Dyfed region of south-west Wales (Caldey Island, 
St Margaret’s Island, Skomer Island, Skokholm 
Island, Ramsey Island, Saddle Point). Counts were 
standardised for variation between sites using a 
negative binomial generalised linear model. Estimates 
of breeding success (fledglings per nest/pair) were 
obtained from all available coastal sites in Cornwall, 
Devon and Dyfed. To account for possible effects of 
density dependence, breeding success estimates were 
standardised using a generalised linear model. Trends 
in abundance and breeding success are shown in 
Figure 2.5.
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Table 2.2. Fish stocks included in the project database and analysis

ICES stock code Species ICES subarea/division ICES working group

Stocks in ICES 
subareas 
overlapping 
with the Celtic 
Sea

her_27_irls Herring (Clupea 
harengus)

7g–h and 7j–k Herring Assessment 
Working Group (HAWG)

cod.27.7e-k Cod (Gadus morhua) 7e–k Working Group for the 
Celtic Seas Ecoregion 
(WGCSE)

had_27_7b-k Haddock 
(Melanogrammus 
aeglefinus)

7b–k WGCSE

ple.27.7e Plaice (Pleuronectes 
platessa)

7e WGCSE

ple.27.7fg 7f–g WGCSE

ple.27.7h-k 7h–k WGCSE

sol.27.7fg Sole (Solea solea) 7f–g WGCSE

sol.27.7e 7e WGCSE

whg_27_7b-ce-k Whiting (Merlangius 
merlangus)

7b–c and 7e–k WGCSE

meg_27_7b-k8abd Megrim (Lepidorhombus 
whiffiagonis)

7b–k, 8a–b and 8d Working Group for the Bay 
of Biscay and the Iberian 
Waters Ecoregion (WGBIE)

mon.27.78abd White anglerfish 
(Lophius piscatorius)

7, 8a–b, 8d WGBIE

Widely 
distributed 
stocks 
occurring in 
the Celtic Sea

hke_27_3a46–8abd_lnRS Hake (Merluccius 
merluccius)

4, 6 and 7, 3a, 8a–b, 8d WGBIE

bss_27_4bc7ad-h Sea bass (Dicentrarchus 
labrax)

4b-c, 7a and 7d–h WGCSE

whb.27.1–91214 Blue whiting 
(Micromesistius 
poutassou)

1–9, 12 and 14 Working Group on 
Widely Distributed Stocks 
(WGWIDE)

hom_27_2a4a5b6a7a-ce-k8 Horse mackerel 
(Trachurus trachurus)

8, 2a, 4a, 5b, 6a, 7a–c 
and 7e–k

WGWIDE

mac_27_nea_lnRS Mackerel (Scomber 
scombrus)

1–8, 14, 9a WGWIDE

	● Common guillemot. Abundance showed a steady 
increase from 1985 to 2018. Breeding success 
showed some decline during the 2000s.

	● Kittiwake. Abundance declined across the time 
period examined whereas breeding success 
declined during the 2000s.

	● Razorbill. Abundance increased after 2008 
whereas breeding success declined.

2.3.5	 Large surface feeding planktivores

Sightings of sunfish, leatherback turtles and basking 
shark are recorded by observers at Cape Clear Bird 
Observatory as a part of a bird migration monitoring 
programme. Temporal trends in sightings are shown in 
Figure 2.6.

	● Basking shark. Sightings fluctuated and were most 
frequent from 2008 to 2016.

	● Leatherback turtle. Sightings were elevated during 
the 1990s relative to the rest of the time series.

	● Sunfish. The incidence of sightings appeared to 
increase from the mid-1990s and was particularly 
high during the early 2000s.

2.4	 Conclusion

The project database brings together a diverse set of 
data describing the biotic and abiotic elements of the 
Celtic Sea ecosystem. This is a valuable resource for 
exploring ecological change, bringing added value 
to previously collected data and integrating data 
generated within the project. Initial visual exploration 
of the data reveals that there has been considerable 
change in the physical environment and across 
multiple trophic levels in the Celtic Sea. The extent to 
which these changes are interconnected is explored in 
the subsequent chapters.
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Figure 2.5. Time series describing trends in seabird populations in the Celtic Sea from the JNCC Seabird 
Monitoring Programme, 1968–2018. Points indicate mean values, standardised for variation between 
sites using a generalised linear model. Counts are of individuals on land (guillemot and razorbill) or of 
occupied nests (kittiwake). Breeding success is the estimated number of fledglings per breeding pair 
or nest. The dotted horizontal line indicates the mean of each time series. A loess smoother (dashed 
coloured lines with shaded area to represent the 95% confidence limits) is fit to each time series to aid 
visualisation of broad trends. Data sources are detailed in Table 2.1.

Figure 2.6. Time series of sightings of large planktivores at the water surface from Cape Clear Bird 
Observatory. Data sources are detailed in Table 2.1.
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3	 Ecosystem Tools: Statistical Approaches to 
Understanding Ecosystem Change

The statistical tools developed and applied in the 
project are outlined briefly in this chapter. The aim is 
not to provide a comprehensive, technical description 
of the methodology, but to give a conceptual overview 
of the benefits of each approach for dealing with 
ecological time series data. Relevant packages and 
supporting literature are identified.

3.1	 Estimating Common Trends in 
Multiple Time Series

When investigating ecosystem change it is necessary 
to examine trends across multiple ecosystem 
components and look for commonality across 
those trends. Dynamic factor analysis (DFA) is a 
dimension reduction technique that is appropriate 
for the analysis of multivariate time series data (Zuur 
et al., 2003a,b). It can be used to identify underlying 
common patterns between a relatively large set of 
time series (Harvey, 1990). These patterns can reflect 
common trends or seasonal cycles and they can be 
related to explanatory variables. DFA aims to reduce 
variation in a set of n observed time series using 
linear combinations of a set of m hidden trends, where 
m << n. The aim is to choose the smallest possible 
number of trends without losing too much information. 
Loading factors are estimated for each time series, 
which reflect the contribution of the time series to each 
trend. The main principle of DFA is similar to that of 
principle component analysis or factor analysis, with 
axes being restricted to be latent smoothing functions 
over time. Unlike other time series techniques 
(e.g. autoregressive integrated moving average, 
ARIMA), DFA can analyse short and non-stationary 
time series that contain missing values. This makes 
DFA particularly useful for ecological series that 
usually possess all of these properties. DFA is applied 
to the analysis of weight-at-age trends across multiple 
fish species in section 6.2 using the MARSS package 
in R (Holmes et al., 2012, 2018). For further model 
specification see https://nwfsc-timeseries.github.io/
atsa-labs/sec-dfa-intro.html.

3.2	 Modelling Complex Relationships 
between Drivers and the 
Ecological Response

Ecological systems are typically influenced by multiple 
drivers that may combine cumulatively or interactively 
(Crain et al., 2008) and often exert threshold or non-
linear responses (Sugihara and May, 1990; Griffen 
et al., 2016). When identifying drivers of ecological 
change it is necessary to look beyond correlation 
with individual drivers and account for additive and 
multiplicative effects while considering underlying 
mechanisms.

Parametric regression models allow for non-linear 
relationships but may fail to detect deep interactive 
effects or non-linear or abrupt changes. Ensemble 
methods replace a single model with a collection of 
simple additive regression model predictions that 
are averaged to give a more robust estimate of the 
response (Hastie et al., 2009). Within ensemble 
methods, gradient boosting regression trees (GBRTs) 
form a supervised machine learning algorithm, which 
allows for complex non-linear interactions between 
environmental drivers (Friedman, 2001). Unlike 
parametric regression models, GBRTs do not require 
the data distribution to meet any assumptions. GBRTs 
use an algorithmic model to learn the relationship 
between the response variable and the covariates and 
to find patterns. The objective of the algorithmic model 
is to minimise mean squared error (MSE), by training 
each successive tree on the errors left over by the 
collection of earlier trees.

The increased availability of complex environmental 
datasets has stimulated interest in using machine 
learning techniques to explain patterns in ecological 
data (Olden et al., 2008; Peters et al., 2014). These 
developments are accompanied by ongoing debate 
about the relative merits of a hypothesis-driven 
compared with a data-intensive approach (Elliott et 
al., 2016). However, when carefully applied, machine 
learning approaches can complement hypothesis-
based research to elucidate complex non-linear 

https://nwfsc-timeseries.github.io/atsa-labs/sec-dfa-intro.html
https://nwfsc-timeseries.github.io/atsa-labs/sec-dfa-intro.html
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relationships in ecological systems (Muttil and Chau, 
2007; Kelling et al., 2009; Peters et al., 2014) and can 
improve predictive performance relative to generalised 
additive models (Leathwick et al., 2006). GBRTs 
are used here to disentangle the effects of multiple 
drivers on herring growth (see section 6.1). Methods 
developed by Elith et al. (2008) were modified within 
Python (Python Software Foundation, 2019).

3.3	 Detecting Change in Highly 
Variable Time Series

Species that show a clumped distribution are sparse 
in some areas and highly abundant in others. Count 
data that are used to estimate abundance are 
therefore often highly variable (overdispersion) and 
may contain a high proportion of zeros (zero inflation). 
Overdispersed and zero-inflated data violate the 
assumptions of parametric models, making it difficult to 
detect trends in abundance and to model relationships 
with explanatory variables.

A hurdle model is a type of two-part model commonly 
used for dealing with zero-inflated and overdispersed 
data and is typically applied to count data. The 
first part of the model treats the counts as a binary 
response – presence or absence – with a Bernoulli 
probability governing the binary outcome of whether 
a variable has a zero or a positive realisation. The 
second part of the model deals with the positive 
observations as a continuous variable; if the 
realisation is positive, the hurdle is crossed and 
the conditional gamma distribution of the positives 
is governed by a truncated-at-zero model (Cragg, 
1971). Hurdle models differ from other classes of 
zero-inflated models in that zeros and non-zeros are 
modelled as two separate processes. This allows 
them to model the zeros and non-zeros with different 
predictors or different roles of the same predictors 
(Cunningham and Lindenmayer, 2005). The hurdle 
model has been shown to perform well compared 
with other modelling approaches, such as Poisson, 
negative binomial, quasi-Poisson and zero-inflated 
Poisson approaches (Potts and Elith, 2006), when 
dealing with zero-inflated species abundance data. 
In section 4.2, a hurdle model is applied to sunfish 
sightings data to establish if there has been a real 
increase in abundance over time and to investigate 
relationships between the occurrence/abundance of 
sunfish and the environment/feeding conditions.

3.4	 Isolating Responses to External 
Drivers from Endogenous Effects 
and Sources of Bias

Temporal variation in population attributes such as 
abundance or growth may partly reflect a response to 
an external driver (e.g. temperature) but can also be 
attributed to endogenous sources of variation (e.g. the 
age structure of the population) and to measurement 
error and bias (e.g. variation in the detectability of 
the species). Mixed-effects models that include both 
fixed and random effects are useful for partitioning 
variance due to these factors and for isolating an 
annual random effect that represents the influence 
of an external driver (or other unmeasured sources 
of variation). Random effects are conditional modes 
calculated as the difference between the average 
predicted response for a given set of fixed-effect 
values and the response predicted for a particular 
year. Once isolated, the annual signal in the random 
effect can be analysed as a time series to investigate 
relationships with environmental covariates. The 
mixed-effects modelling framework has many 
important and diverse applications in fisheries science 
and ecology (Thorson and Minto, 2014). Here, the 
approach is applied in two contexts. In section 4.2, 
mixed-effect models are used to standardise sunfish 
sightings per minute of observation for factors that 
cause the detectability of the organism to vary 
(e.g. weather conditions, number of observers). The 
annual signal extracted in the year random effects 
is then modelled as a function of the environmental 
covariates that are expected to be associated with 
abundance (e.g. temperature and abundance of 
prey organisms). In section 6.3, a mixed-effects 
modelling framework developed by Morrongiello and 
Thresher (2014) is modified to explore endogenous 
(e.g. age, sex) and exogenous (e.g. temperature, 
feeding conditions) sources of variation in growth rates 
(measured in otolith annuli). A random effect is also 
included to account for non-independence of repeated 
growth measurements from the same individuals.

3.5	 Identifying Change Points in 
Ecological Time Series

A change point is a statistical property of a time series, 
characterised by a sudden or step-like increase 
or decrease in the level, trend or variance of the 
measured variable (Reeves et al., 2007; Spencer 



15

D. Brophy et al. (2015-NC-MS-3)

et al., 2012). When synchronous change points are 
observed across multiple time series that represent 
a broad range of ecosystem components, a regime 
shift may be identified – although there is no single 
definitive approach to determining whether or not a 
regime shift has occurred (Lees et al., 2006). Many 
statistical methods are available to identify change 
points; these vary in their underlying assumptions, 
their sensitivity and the situations in which they can be 
applied (Reeves et al., 2007). Some of the methods 
that are most widely used to identify ecological regime 
shifts do not account for issues of autocorrelation 
(time series measurements are not independent 
observations) and multiple testing (every point in 
the time series must be tested for the occurrence 
of a change point) and may have an inflated rate of 
false positives (detecting a step change when none 
has occurred) relative to more statistically robust 
approaches (Spencer et al., 2012). Theoretical and 
experimental studies have demonstrated that change 
points in ecological time series are often preceded 
by increases in variance and autocorrelation, a 
phenomenon known as “critical slowing down”, and 
these properties have been proposed as potential 

“early warning indicators” (EWIs) of impending 
regime shifts (Scheffer et al., 2009; Pace et al., 
2013). However, this approach appears to have 
limited application in a “real world” ecosystem setting 
(Hastings and Wysham, 2010; Perretti and Munch, 
2012; Krkosek and Drake, 2014); an analysis of 
126 ecological time series from across 55 taxa found 
that EWIs were only rarely associated with change 
points (Burthe et al., 2016).

In this study, a Bayesian online change-point detection 
(BOCPD) algorithm (Adams and MacKay, 2007) 
was applied across multiple time series describing 
the Celtic Sea ecosystem to identify change points 
in the level and standard deviation of the measured 
variables. The approach is fully described in 
Chapter 7. It has advantages over other approaches 
that are commonly applied to the detection of 
ecological regime shifts in that the Bayesian 
framework robustly deals with multiple testing and 
explicitly accounts for uncertainty. The approach can 
be applied online, removing the need to refit the model 
as new data become available and providing a means 
for early detection of change points. 
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4	 Boom–Bust Cycles: Quantifying Spatial and Temporal 
Variability in Jellyfish and their Predators in the 
Celtic Sea

In this chapter a short-term contemporary field study 
of the gelatinous zooplankton community in the Celtic 
Sea is presented, alongside an analysis of extended 
time series describing the abundance of gelatinous 
zooplankton taxa and large planktivorous surface 
feeders (sunfish, basking sharks and leatherback 
turtles). This work provides insight into the trophic 
importance of jellyfish in the Celtic Sea and the 
influence of the physical environment on distribution 
and abundance, as well as temporal trends in the 
abundance of jellyfish and their predators.

4.1	 Distinct Gelatinous Zooplankton 
Communities across a Dynamic 
Shelf Sea

This study is described in full in Haberlin et al. (2019). 
A synopsis of the study and the main findings in 
relation to gelatinous zooplankton community structure 
and biomass is presented below. The structure of the 
broader zooplankton community is also described in 
the full manuscript.

4.1.1	 Background

Gelatinous zooplankton can exert substantial top-
down pressure on prey species and, on occasion, 
intense blooms of particular species can cause a 
trophic cascade, transforming an entire ecosystem 
into a less desirable state, at least from a human 
perspective (Greve, 1994; Kideys, 2002; Kideys and 
Romanova, 2003). Just as important is the role of 
gelatinous zooplankton as competitors, whereby their 
rapid growth potentially allows them to outcompete 
planktivorous fish species (Brodeur et al., 2008; 
Ruzicka et al., 2016). Gelatinous zooplankton 
are consumed by a substantial number of marine 
predators (Hays et al., 2018), including important 
commercial fish species (Arai, 1988; Purcell and Arai, 
2001), while trophic interactions between gelatinous 
taxa can alter the flow of biomass through pelagic 
food webs (Baxter et al., 2010). The structure of 

gelatinous zooplankton communities is strongly 
influenced by local hydrography and physical forcing; 
understanding these relationships is important in order 
to predict potential ecosystem changes and be able to 
sustainably exploit marine ecosystems.

Although a large body of research has described 
how fronts, hydrographic boundaries and different 
water masses (e.g. mixed vs stratified) influence 
phytoplankton and zooplankton communities, 
comparatively few studies have investigated their 
influence on gelatinous zooplankton communities. This 
field study investigated the gelatinous zooplankton 
community in the region of the Celtic Sea front (CSF) 
and examined the influence of hydrography on 
community structure and biomass.

4.1.2	 Sampling

The study site is characterised by a strong oceanic 
influence and profound seasonal changes. Depths 
range from approximately 40 m to 110 m, with the 
deepest region lying approximately south-west of 
St George’s Channel, which marks the geographic 
boundary between the Celtic Sea and the Irish Sea 
(Figure 4.1a). The research cruise was undertaken 
aboard the R.V. Prince Madog between 13 and 
17 July 2015, at which time the CSF had become well 
established (Figure 4.1b), and zooplankton sampling 
was carried out along five transects within the study 
area. In total, 49 zooplankton samples were collected, 
every 6 km, using a 1-m-diameter, 270-µm-mesh 
plankton net with a flowmeter. At each station, the 
plankton net was towed vertically from a depth of 50 m 
to the surface at a velocity of approximately 1 m s–1.

4.1.3	 Results

In total 21 gelatinous taxa were identified from the 
49 samples, including 17 hydromedusae, three 
ctenophores and one scyphozoan species. Several 
hydrozoans were relatively common across the survey 
area, with Aglantha digitale, Clytia hemisphaerica, 
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Agalma elegans, Nanomia bijuga, Lizzia blondina and 
Leuckartiara octona all recorded at > 60% of stations 
(Figure 4.2). A. digitale and L. blondina were, by an 
order of magnitude, the dominant hydromedusae 
throughout the survey area, reaching a mean of 
200 ± 247 m–3 and 88 ± 159 m–3, respectively, and being 
present at 80% and 75% of stations, respectively. Of 
the ctenophores, Pleurobrachia pileus was the most 
widespread, being present at 94% of stations, with a 
mean abundance of 0.25 ± 0.23 m–3.

Hierarchical clustering and non-metric 
multidimensional scaling (NMDS) ordination indicated 
that there were two distinct and significantly different 
gelatinous zooplankton communities [analysis of 
similarities (ANOSIM), r = 0.72, p < 0.001] across 
the survey area (Figure 4.2). The first community 
included stations in the warmer stratified water of 
the Celtic Sea lying to the west of the CSF meander. 
The second community included all of the stations 
in the cooler mixed water within the meander and 
contiguous with the Irish Sea, and the stations over 
the warm stratified Celtic Deep region (see Figure 
4.1a). The total gelatinous biomass was significantly 
higher in the warm water gelatinous community 
(2.08 ± 1.72 mg C m–3) than in the cold water community 
(1.33 ± 1.19 mg C m–3). Multivariate analysis indicated 
that the best correlation between the environmental 
parameters and the community matrix was achieved 
with just depth and the temperature at 50-m depth 
included (Mantel, r = 0.53, p < 0.001). Including 
fluorescence at 50 m, the vertical temperature 

difference and the vertical density difference did 
not substantially change the r value. There was no 
evidence to suggest that the gelatinous abundance of 
biomass was enhanced in the vicinity of the CSF.

4.1.4	 Conclusions

Our results identified two distinct gelatinous 
communities, partially separated by the CSF, which 
supports previous work on other taxa, e.g. large 
scyphozoans (Williams et al., 1994; Doyle et al., 
2007; McGinty et al., 2014). This research suggests 
that the ultimate driver of these two gelatinous 
communities is the interaction between the underlying 
topography, tidal forcing and surface heating, which 
creates a dynamic front between two distinct water 
masses. Finally, this research has identified physonect 
siphonophores as a significant component of the 
gelatinous community in the warm stratified water of 
the Celtic Sea, which merits further attention.

4.2	 Examining Temporal Changes in 
the Occurrence and Abundance of 
Sunfish

4.2.1	 Background

Recent studies report surprisingly high densities of the 
ocean sunfish (Mola mola, hereafter sunfish) in the 
North-East Atlantic (Palsson and Astthorsson, 2016; 
Breen et al., 2017; Gremillet et al., 2017). Incidental 

Figure 4.1. (a) Plankton survey sampling location in the north-eastern Celtic Sea with the five transects 
and topographic features; (b) mean SST in mid-July (8–16 July) 2015 with the CSF marked by the 
grey line. Source: Haberlin et al. (2019). This is an open access article under the terms of the Creative 
Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any 
medium, provided the original work is properly cited and is not used for commercial purposes.

(a) (b)
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sightings records indicate that the occurrence of 
the species at the northern end of its distribution 
has increased (Palsson and Astthorsson, 2016; 
Frafjord et al., 2017). It has been proposed that 
the high abundance of sunfish reflects an increase 

in jellyfish biomass due to ocean warming and the 
overexploitation of shark predators (Gremillet et 
al., 2017). The species is not directly targeted by 
fisheries and, although aerial surveys have provided 
quantitative estimates of current densities (Breen et 

Figure 4.2. Abundance (individuals m–3) and distribution of the dominant gelatinous species across the 
study area, which contributed to the two distinct gelatinous communities: a warm water gelatinous 
community (orange) and a cold water gelatinous community (blue). Note that the scale for each species 
is different and the shaded polygons are simply a visual aid to identify the extent of the two gelatinous 
communities.
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al., 2017; Gremillet et al., 2017), extended abundance 
time series are lacking. Therefore, very little is known 
about historical abundance levels and population 
trends, and the factors that contribute to changes in 
abundance and distribution have not been directly 
investigated.

The reconstruction of past trends in sunfish 
abundance relies largely on sightings records, which 
are collected opportunistically or as part of monitoring 
surveys for other species and through citizen science 
initiatives. Statistical tools exist to account for sources 
of error and bias inherent in data collected by human 
observers (Bird et al., 2014; Isaac et al., 2014). 
Sightings per unit time can be standardised using 
variables that cause detectability to vary within general 
linear modelling, generalised additive modelling and 
mixed-effects modelling frameworks, allowing the 
underlying long-term trend to be detected (Archibald 
and James, 2016; Walker and Taylor, 2017). Since 
the 1970s, land-based observations of sunfish have 
been recorded during timed watches by volunteers at 
the Cape Clear Bird Observatory on the south-west 
coast of Ireland as part of a bird migration monitoring 
programme co-ordinated by BirdWatch Ireland. The 
data include information on conditions that may 
affect detectability (time of year, sea state, number of 
observers), potentially providing a long-term index of 
the abundance of sunfish at this location in the Celtic 
Sea. The aim of this study was to use this valuable 
data resource to produce a standardised index of 
the occurrence and relative abundance of sunfish, 
to examine its temporal variability and to establish 
relationships with environmental variables.

4.2.2	 Data analysis

The sightings data include 46 years of observations 
from April to October between 1971 and 2017, a 
total of 4975 records. The response variable was the 
number of sunfish sighted per minute of effort. For 
86% of these observations no sunfish were sighted 
and hence these were recorded as zero. No data were 
available for the period 2013–2015 because of the 
temporary suspension of the monitoring programme. 
Only data that were collected during timed, shore-
based watches were included in the analysis.

There were two types of explanatory variable: 
(1) those that are expected to influence detectability 

and (2) those that might correlate with actual sunfish 
abundance.

The type 1 variables were the duration of the watch 
in minutes (watch duration), the number of observers 
present (observer number), month, sea state and wind 
direction. Local wind direction was converted from 
degrees to four cardinal categories: E-NE (0–68°), 
S-SE (68–158°), W-SW (158–248°) and N-NW 
(248–360°), with W-SW being the most frequently 
observed.

The type 2 variables described the temperature (mean 
latitude of the 13°C isotherm), feeding conditions for 
sunfish (CPR estimates of siphonophore abundance), 
phytoplankton abundance (PCI from the CPR) and 
sightings of other large plankton feeders. Details 
of these data sources are included in Table 2.1. All 
continuous variables were expressed as annual means 
and scaled by subtracting their mean and dividing by 
the standard deviation. The PCI was expressed as an 
annual median.

The data were analysed using a two-part gamma 
hurdle model to account for zero inflation. In the 
first (Bernoulli) part of the model the response was 
the binary variable: sunfish presence/absence. In 
the second (gamma) part the response was the 
continuous variable: number of sunfish sighted per 
minute. To isolate the effect of variables that might 
influence detectability and to partition out the annual 
signals in occurrence and abundance, the type 1 
explanatory variables (watch duration, observer 
number, month, wind direction and sea state) 
were included as fixed effects in a mixed-effects 
model, which was applied separately to each part 
of the hurdle model. The factor variable “year” was 
included as a random effect. The year random effects 
(conditional modes) were extracted for each part of the 
hurdle model and were then included as the response 
variable in a series of general linear models that 
modelled the effect of the type 2 variables on sunfish 
occurrence and abundance.

4.2.3	 Results

Factors affecting sunfish presence/absence

The fixed effects of watch duration, observer number, 
sea state and wind direction were all significant in 
the Bernoulli part of the hurdle model (Table 4.1), 
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indicating that these factors influence the detectability 
of sunfish. The probability of sighting a sunfish was 
positively associated with watch duration and observer 
number and negatively associated with sea state. 
The inclusion of year as a random effect significantly 
improved the model fit relative to the reduced model 
(p < 1.27 × 10–8). This showed that, after accounting 
for variation in detectability associated with watch 
duration, observer number, sea state and wind 
direction, there was a significant annual signal in 
sunfish occurrence. The mean annual probability of 
sighting a sunfish appears to increase after 1990, 
although the probability was also high at the start of 
the time series (1971) and low for five consecutive 
years towards the end of the time series (2007–2011) 
(Figure 4.3).

General linear models of the conditional modes of 
the year random effect (the annual signals described 
above) showed that both the PCI and the latitude of 
the 13°C isotherm were positively and significantly 
correlated with the probability of sighting a sunfish. 
Contrary to expectations, there was a significant 
negative correlation between the index of food 
availability (siphonophores) and the probability of 
detecting a sunfish (Table 4.2 and Figure 4.4).

Factors affecting the number of sunfish sighted

The gamma part of the hurdle model showed that the 
number of sunfish sighted was significantly negatively 
correlated with watch duration and observer number 
(see Figure 4.3). The inclusion of year as a random 
effect significantly improved the model fit relative to 
the reduced model (p = 0.043), showing that, after 
accounting for factors that influence detectability, the 
number of sunfish sighted varied significantly between 
years. The year random effect showed no clear annual 
trend (see Figure 4.3). The conditional modes of 
the year random effect from the gamma model were 
negatively correlated with the latitude of the 13°C 
isotherm and basking shark sightings per minute and 
positively correlated with the PCI and siphonophore 
abundance (Table 4.2 and Figure 4.5).

4.2.4	 Conclusions

By combining a gamma hurdle model with a mixed-
effects modelling framework we were able to deal 
with the high proportion of zero observations in 
the extended time series of sunfish sightings while 
removing potential bias resulting from variation in 
detectability. The approach was effective at extracting 

Table 4.1. Fixed-effects summary statistics from the gamma hurdle model, showing the contribution of 
factors that potentially affect the detectability of sunfish 

Model Effect Estimate Standard error Z-value p-value

Bernoulli model (sunfish 
presence/absence)

Intercept –2.419 0.689 –3.510 4.49 × 10–4***

Watch duration 0.644 0.089 7.197 6.17 × 10–13***

Month 0.042 0.072 0.580 0.562

Observer number 0.220 0.097 2.259 0.024*

Wind direction (N-NW) –0.553 0.354 –1.564 0.118

Wind direction (S-SE) –0.016 0.382 –0.043 0.966

Wind direction (W-SW) –0.691 0.361 –1.913 0.056

Sea state –0.244 0.084 –2.896 0.004**

Gamma model (sunfish 
numbers)

Intercept –2.082 0.789 –2.637 0.008**

Watch duration –0.579 0.061 –9.362 < 2 × 10–16***

Month –0.318 0.101 –3.138 0.001**

Observer number 0.0579 0.095 0.609 0.542

Wind direction (N-NW) 0.234 0.209 1.117 0.264

Wind direction (S-SE) –0.048 0.223 –0.217 0.828

Wind direction (W-SW) –0.224 0.209 –1.069 0.285

Sea state 0.0313 0.056 0.558 0.576

*Significant at p < 0.05; **significant at p < 0.01; ***significant at p < 0.001.
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Table 4.2. General linear model summary statistics, showing associations of sunfish sightings with 
environmental covariates and sightings of other species

Model Effect Estimate Standard error t-value p-value

Bernoulli model 
(sunfish presence/
absence)

Intercept –0.336 0.030 –10.986 < 2 × 10–16***

Basking shark sightings minute–1 –0.005 0.011 –0.493 0.622

Leatherback sightings minute–1 0.009 0.009 1.001 0.317

PCI 0.395 0.033 11.886 < 2 × 10–16***

Siphonophore abundance –0.143 0.014 –9.714 < 2 × 10–16***

13°C isotherm latitude 0.322 0.015 20.858 < 2 × 10–16***

Gamma model (sunfish 
numbers)

Intercept –0.026 0.041 –0.642 0.522

Basking shark sightings minute–1 –0.008 0.003 –2.188 0.031*

Leatherback sightings minute–1 –0.004 0.016 –0.243 0.808

PCI 0.106 0.037 2.842 0.005**

Siphonophore abundance 0.106 0.022 4.792 6.22 × 10–6***

13°C isotherm latitude –0.066 0.021 –3.019 0.003**

*Significant at p < 0.05; **significant at p < 0.01; ***significant at p < 0.001.

(c)(b)(a)

Figure 4.3. (a) Plot of the relationship between the predicted probability of detecting a sunfish and 
watch duration (from the Bernoulli part of the hurdle model); (b) plot of the random effect of year from 
the Bernoulli part of the hurdle model showing the annual signal in the relative probability of sighting 
a sunfish; (c) plot of the random effect of year from the gamma part of the hurdle model showing the 
relative number sighted after standardising for factors influencing detectability.

Figure 4.4. Random effect of year (from the Bernoulli part of the hurdle model) plotted against predictors. 
Red observations are those made before 1990; blue are those made after 1990. Superimposed lines 
are predicted partial slopes for a given predictor, when the other predictors were held fixed, with a 95% 
pointwise confidence interval for the fitted values.
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the underlying annual signals in the data. The annual 
trend in the presence/absence of sunfish at the Cape 
Clear Bird Observatory will probably provide a good 
indication of trends in the occurrence of sunfish in 
the Celtic Sea. Located 13 km offshore, the study site 
is well positioned for observing sunfish on-passage 
or feeding on offshore aggregations of jellyfish and 
is situated within an area of relatively high sunfish 
density (Breen et al., 2017). The same individual filled 
the position of site warden for most of the time series, 
ensuring consistency in the collection of the data.

The results suggest that sunfish occurrence in the 
Celtic Sea increased markedly after the mid-1990s. 
This trend is associated primarily with ocean warming 
(the increasing latitude of the 13°C isotherm), 
with evidence of a weak positive association with 
phyotoplankton abundance (PCI). Sunfish are 
important predators of siphonophores (Nakamura 
et al., 2015) and have been shown to co-occur with 
certain species of siphonophore in the Celtic Sea 
(Houghton et al., 2013). CPR records indicate a 
dramatic increase in the abundance of siphonophores 
in the Celtic Sea in recent decades. However, this 
increase appears to have occurred later than the 
increase in sunfish occurrence (after 2000) and 
persisted during the period when the sunfish sighting 
probability decreased (2007–2011). Consequently, the 
correlation between sunfish presence/absence and 
siphonophore abundance is negative.

Considering only the positive sightings, there is 
no clear increase or decrease in the numbers of 
sunfish sighted over the time period when most of 

the positive sightings were recorded (after 1990). 
Contrary to what was observed with the presence/
absence data, the numbers of sunfish sighted were 
positively associated with siphonophore abundance 
and negatively associated with temperature. Sightings 
recorded by human observers at a single location 
may not provide a sufficiently precise estimate of 
relative abundance because of spatial variability in 
sunfish distribution and variation between observers. 
Although we are confident that the increased incidence 
of sightings during the 1990s reflects a real change in 
the occurrence of sunfish in the Celtic Sea, changes in 
relative abundance should be interpreted with caution.

Although there is no evidence that increased 
siphonophore abundance led to an increase in the 
occurrence of sunfish in the Celtic Sea, as sunfish 
expand their range within the Celtic Sea they 
may benefit from this increase in food availability. 
This could explain the positive correlation with the 
number of sunfish sightings later in the time series. 
Sunfish display complex vertical migration behaviour, 
characterised by periods of surface basking and deep 
dives (Nakamura et al., 2015). Both horizontal and 
vertical movements are influenced by temperature 
fronts and ocean currents (Potter et al., 2011; Thys 
et al., 2015). The influence of ocean warming on 
feeding, diving and aggregation behaviour of sunfish 
(and consequently on surface sightings) is likely to be 
complex. More detailed spatially resolved surveys are 
required to fully understand the role of the environment 
in shaping the distribution and abundance of this 
important planktivorous predator.

Figure 4.5. Random effect of year (from the gamma part of the hurdle model) plotted against predictors. 
Red observations are those made before 1990; blue are those made after 1990. Superimposed lines 
are predicted partial slopes for a given predictor, when the other predictors were held fixed, with a 95% 
pointwise confidence interval for the fitted values.



23

5	 Influence of Physical Processes on Ocean Transport

A model of ocean circulation in the Celtic Sea for the 
period 2002–2014 was developed using the Atlantic-
Iberian Biscay Irish-Ocean Physics Reanalysis product 
(Sotillo et al., 2015). This provided a physical context 
for investigating change in the Celtic Sea ecosystem 
during that period. Using Celtic Sea herring as a case 
study, the potential influence of changing wind patterns 
on larval transport and retention was investigated. 
This study is described in full in Deschepper et al. 
(2019). A synopsis of the study and its main findings is 
presented in the following sections.

5.1	 A Biophysical Model of Early 
Larval Transport and Retention 
in Atlantic Herring (Clupea 
harengus L.) in the Celtic Sea

5.1.1	 Background

Larval transport processes exert a critical influence 
on the dynamics of fish populations. Physical 
oceanographic mechanisms interact with the 
behaviour of spawning adults and developing larvae 
to regulate delivery to suitable nursery habitats via 
dispersal or retention (Pineda et al., 2007; Stephenson 
et al., 2015; Zolck et al., 2015). Inter- and intra-annual 
variability in hydrodynamic and meteorological 
conditions can contribute to temporal variation in larval 
distribution (Pacariz et al., 2014), survival (Hinrichsen 
et al., 2012), growth (Vikebo et al., 2005) and 
abundance (Nielsen et al., 1998), with consequences 
for subsequent recruitment success (Baumann et al., 
2006) and population exchange (Nielsen et al., 1998; 
Huwer et al., 2016).

Coupled biophysical models provide a means to 
reconstruct larval transport processes that are 
difficult to observe directly (Hinrichsen et al., 2011). 
By reconstructing larval transport under different 
conditions, dispersal simulations can help to forecast 
the most likely impacts of changing circulation patterns 
on the connectivity of life history stages within the 
context of climate change (Rijnsdorp et al., 2009; 
Llopiz et al., 2014). This study uses an individual-
based model (IBM) coupled offline to a hydrodynamic 

model to reconstruct the dispersal of larval herring 
from a known spawning ground in the Celtic Sea.

Winter-spawned juvenile herring from the Celtic Sea 
are known to occupy nursery grounds in the Irish Sea, 
where they mix with the resident autumn-spawned 
population, with mixing rates showing substantial 
inter-annual variability (Brophy and Danilowicz, 2002; 
Burke et al., 2009). Evidence suggests that transport 
happens early in the larval phase, within a month of 
hatching (Brophy and Danilowicz, 2002). Celtic Sea 
herring that disperse to the Irish Sea appear to return 
to the Celtic Sea as adults to spawn (Brophy et al., 
2006). The dispersed and retained components of 
the Celtic Sea herring population show differences in 
growth and age at maturation (Brophy and Danilowicz, 
2003; Brophy et al., 2006). Variability in larval dispersal 
is therefore likely to contribute to variation in growth, 
recruitment and lifetime fecundity of Celtic Sea herring.

This study investigated inter- and intra-annual 
variability in dispersal and retention of Celtic Sea 
herring and examined the influence of currents, winds 
and tides, as well as larval behaviour and diffusion 
processes, on the direction of movement. The potential 
influence of environmental change on larval transport 
processes and the consequences for fisheries were 
considered.

5.1.2	 Methods

Study design

Hydrodynamic data were available for the period 
2002–2012. From this time period, six year classes 
were selected for inclusion in the simulation: 2002, 
2003, 2004, 2005, 2008 and 2010.

Four release dates were randomly selected in 
each year to coincide with the drift period of winter-
spawning herring (December–February). Simulations 
were carried out using Ichthyop, an open-source, 
individual-based modelling tool (Lett et al., 2008). The 
original Ichthyop code was modified to incorporate the 
behavioural parameters of herring; after 10 days of 
passive drift, diel vertical migration (DVM) behaviour 
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was incorporated into the simulations and various 
DVM behaviour scenarios were compared.

The release area for the simulations was the spawning 
ground offshore of Dunmore East on the south-east 
coast of Ireland (area A, Figure 5.1). On each date, 
3000 particles were released in three replicate batches 
of 1000 particles. Particles were released at the 
bottom of, and at randomly selected positions within, 
the release area and larval transport was simulated for 
30 days. On each replicate run, release position and 
the depth occupied at night after the onset of vertical 
migrations were re-randomised. The larvae were 
forced with vertical and horizontal currents throughout 
the 30-day simulation.

Ocean circulation mechanism

The three-dimensional velocity fields used to drive 
advection and dispersion in Ichthyop were taken 
from the Atlantic-Iberian Biscay Irish-Ocean Physics 
Reanalysis product (2002–2014) (Sotillo et al., 2015). 
Simulations were run using two different velocity field 
set-ups, one based on daily mean currents, which 

contained no tidal signal in the velocity fields because 
of daily averaging (the non-tidal simulation), and 
a second based on derived hourly currents, which 
included the tidal signal in the velocity fields (the tidal 
simulation). Several diffusion settings were compared 
in order to assess the potential impact of small-scale 
diffusion processes on larval transport.

Wind and tidal data

Hourly records of wind speed and direction for the 
period 1962–2016 were acquired from the Met Éireann 
synoptic weather station at Cork Airport. Hourly 
records were categorised based on the direction of 
the wind: 150–210° (SSE-SSW); 210–270° (SSW-W); 
270–330° (W-NNW); 330–30° (NNW-NNE); 30–90° 
(NNE-E); and 90–150° (E-SSE). For each category 
a wind index was derived from the product of the 
mean monthly duration and speed of the winds in that 
category, producing six wind indices: ind150–210, 
ind210–270, ind90–150, ind270–330, ind330–30 and 
ind30–90. The timing of the new moon was used to 
derive an index of tidal state on each release date 
(spring tides, neap tides and moderate tides).

Statistical analysis

Particles were categorised according to their position 
at the end of the 30-day simulation period: transported 
to the Irish Sea (area B, Figure 5.1), transported 
offshore in the Celtic Sea (area C, Figure 5.1) or 
retained inshore in the Celtic Sea (areas A and D, 
Figure 5.1). Multinomial modelling was used to analyse 
variation in the end-point distributions between the 
non-tidal and the tidal hydrodynamic simulations, to 
quantify inter- and intra-annual variability in transport 
and retention and to investigate the influence of DVM 
behaviour, diffusion, wind and tidal conditions on the 
probability of dispersal to each area.

5.1.3	 Results

Inter- and intra-annual variation in transport and 
retention

At the end of the 30-day simulation period, particles 
were distributed across all three areas (Irish 
Sea, offshore Celtic Sea and inshore Celtic Sea) 
(Figure 5.2). Across all of the release dates, the most 
common outcome of the simulation was retention 

Figure 5.1. Map of the study location showing 
the particle release area on the Dunmore East 
spawning grounds (A). At the end of each 
simulation, particle end points were mapped and 
the numbers of end points in the Irish Sea (B), 
Celtic Sea offshore (C) and Celtic Sea inshore (D) 
were counted and compared between runs. The 
dashed box indicates the boundary of the study 
area used in the simulations. The position of the 
Met Éireann synoptic station from which wind 
measurements were obtained is indicated by a 
black square.
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within the Celtic Sea (70% and 78% of particles, 
on average, for the non-tidal and tidal simulations, 
respectively), followed by dispersal offshore in the 
Celtic Sea (27.6% and 17.9%, on average, for the 

non-tidal and tidal simulations, respectively). Dispersal 
to the Irish Sea was the rarest outcome (2.8% 
and 4.1%, on average, for the non-tidal and tidal 
simulations, respectively) (Figure 5.3).

Figure 5.2. Particle distributions at the end of each 30-day simulation using the tidal simulation. Particles 
are colour-coded according to their position in relation to the three predefined areas indicated by the 
boundary lines in the maps: green, Celtic Sea; blue, Irish Sea; and purple, offshore. The first day of the 
simulation is indicated above each plot.

Figure 5.3. Proportion of particles in each area at the end of each 30-day simulation period using the 
non-tidal simulation (NT) and the tidal simulation (T). Panel borders separate the various year classes for 
which larval transport is simulated, e.g. the 2002 year class corresponds to the period December 2002–
March 2003. The simulation start date is shown over each pair of simulations. CS, Celtic Sea; IS, Irish 
Sea; OS, offshore.
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Relative rates of transport and retention varied 
substantially between release dates, with no clear 
annual trend (see Figure 5.3). Multinomial model 
outputs showed that most (65%) of the variance in 
end-point distributions was due to the effect of the 
release date, with variation between years being 
relatively minor (2.5%).

The influence of tides, larval behaviour and 
diffusion on particle transport

The probability of particles occurring in the Irish 
Sea at the end of the simulations was significantly 
higher for the tidal simulation than for the non-tidal 
simulation (p < 0.001), indicating that the tides were 
instrumental in delivering particles to the Irish Sea. 
Transport offshore was significantly less likely for 
the tidal simulation than for the non-tidal simulation 
(p = 0.01). Plotted particle trajectories demonstrated 
how tides influenced particle transport (Figure 5.4); 

tidal movements appeared to push the particles across 
St George’s Channel and further into the Irish Sea 
relative to particles released from similar locations in 
the non-tidal simulations. Although particles moved 
backwards and forwards across the Channel with the 
ebb and flow of the tide, overall displacement was 
predominantly in a north-eastward direction, possibly 
because of asymmetry in the tidal flow.

Rates of particle delivery to each area were also 
influenced by DVM (chi-square = 4791; p < 0.0001) and 
horizontal diffusion (chi-square = 5153; p < 0.0001), 
highlighting the need for additional field data to 
validate these processes.

The influence of winds and tidal strength on larval 
end-point distributions

The optimal multinomial model of particle end-point 
probabilities included two wind indices (ind210–270 
and ind90–150), as well as the tidal state index. The 

Figure 5.4. Particle trajectories for particles released from similar locations in the non-tidal (left-hand 
panels) and tidal (right-hand panels) simulations on two dates. Circles represent the release locations 
and triangles represent the positions at the end of the 30-day simulation period.

31 January 2003
Non-tidal simulation

31 January 2003
Tidal simulation

02 January 2009
Non-tidal simulation

02 January 2009
Tidal simulation

La
tit

ud
e

Longitude



27

D. Brophy et al. (2015-NC-MS-3)

predictive power of the model was high for the Celtic 
Sea and offshore areas (least squares mean R2 = 0.76 
and 0.77, respectively; p < 0.0001). Predictions 
of the rarer outcome of transport to the Irish Sea 
were more prone to error (R2 = 0.42; p < 0.0001). 
Strong and frequent E-SSE winds (ind90–150) were 
associated with a higher probability of transport to 
the Irish Sea and retention in the Celtic Sea and a 
lower probability of transport offshore. Winds from the 
SSW-W (ind210–270) were associated with higher 
rates of transport to offshore areas and lower rates of 
retention in the Celtic Sea (Figure 5.5). The model-
predicted probability of retention in the Celtic Sea was 
highest and the probability of transport offshore was 
lowest when the release date coincided with a spring 
tide. The probability of transport into the Irish Sea 
was highest on release dates that coincided with a 
moderate tide.

5.1.4	 Conclusions

The results show that currents acting under 
atmospheric and tidal forcing in the Celtic Sea split 
the larval herring population along three trajectories. 
Ocean circulation patterns in the Celtic Sea during 
winter generally favour the retention of herring larvae 
in inshore areas along the south of Ireland, although 
transport to offshore areas in the Celtic Sea and to the 
Irish Sea also occurs. Strong and frequent prevailing 
winds from a west/south-westerly direction result 
in substantial transport away from the Celtic Sea 
retention area, into deeper offshore waters, whereas 
strong and frequent east to south-south-east winds 
increase Celtic Sea retention and transport across St 
George’s Channel into the Irish Sea.

Temporal trends in wind patterns from 1962 to 2016 
(see Figure 2.2) show strong prevailing winds prior to 
1990, followed by a period of relative calm and a more 

Wind index 90-150 (E-SSE)
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Wind index 210-270 (SSW-W)

Celtic Sea Irish Sea Offshore

Figure 5.5. Mean predicted probabilities (plotted line) with 95% confidence limits (grey shading) of 
a particle occupying each of the three areas (Celtic Sea, Irish Sea, offshore) at the end of the 30-day 
simulation period in relation to the strength and frequency of E-SSE winds (ind90-150) and SSW-W winds 
(ind210-270). The vertical line indicates the mean wind index across all of the years.
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recent increase. The frequency of the prevailing winds 
has also increased over the time series. The results 
of this study indicate that these changes in wind 
patterns could impact on the connectivity of the Celtic 
and Irish Seas and on the transport of herring larvae 
(and potentially of other dispersing organisms). This 
has consequences for juvenile mixing rates and the 
management of the associated fisheries.

Future changes in wind patterns as a result of climate 
change are predicted (Reyers et al., 2016; La Sorte 
and Fink, 2017), with consequences for ocean 
circulation. Potential impacts of climate change on 

larval dispersal are not well understood (Petitgas 
et al., 2013). Coupling forecast climate scenarios 
with biophysical hydrodynamic models could help to 
predict the impact of future change on larval dispersal 
and nursery ground connectivity in the Celtic Sea 
(Hollowed et al., 2009). The modelling framework 
presented here could be further developed and 
refined and its geographic range extended to simulate 
population connectivity under different climate change 
scenarios, providing a predictive tool to support 
the management of the Celtic Sea ecosystem and 
its fisheries.
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6	 Temporal Dynamics in the Growth Rates of Celtic Sea 
Fish Species

In fish populations, biological responses to external 
pressures are often manifested in changes in growth 
rate. Pronounced increases and decreases in 
growth rates of various species have been linked to 
ecosystem regime shifts (Ito et al., 2015; Smolinski 
and Mirny, 2017; van der Sleen et al., 2017; Matta 
et al., 2018). Therefore, fish growth time series may 
provide useful indices of broader ecosystem changes.

Here, three data sources were used to describe 
temporal trends in growth rates of Celtic Sea fish:

	● individual-based records of length, weight 
and age from port sampling records of herring 
(1958–2012);

	● population mean weight-at-age estimates from 
ICES stock assessments for multiple species 
(1958–2010, varies by species);

	● individual otolith growth chronologies for plaice, 
herring and haddock using material from Marine 
Institute otolith collections (1985–2014, varies by 
species).

Temporal growth signals were isolated from intrinsic 
sources of variation, and correlations with potential 
environmental, population or fishing-related drivers 
were investigated. Synchrony across species was also 
examined. The treatment of these data and the main 
findings are summarised in this chapter.

6.1	 Explaining Declines in the 
Growth of Celtic Sea Herring

A full report of this study has been submitted to 
Ecological Informatics and is currently under revision.

6.1.1	 Background

Directional changes in growth have been observed 
across many exploited fish populations (Neuheimer 
and Taggart, 2010; van Walraven et al., 2010; Baudron 
et al., 2011; Neuheimer et al., 2011) and variously 
attributed to changes in the physical environment 
(typically temperature), food availability and population 
density and to the selective effects of fishing (Law, 

2000; Conover and Munch, 2002; Swain et al., 2007; 
Audzijonyte et al., 2016). Declines in growth lead 
to lower overall productivity through influences on 
survival, recruitment, fecundity and susceptibility 
to stock decline (Brander, 2007). This creates an 
imperative to interrogate temporal change in growth, 
determine the combined influence of various potential 
contributing factors and improve understanding of the 
most likely future responses to the combined influence 
of climate and fishing (Perry et al., 2010).

Growth rates of Celtic Sea herring showed a marked 
decline from the mid-1970s onwards (Harma et al., 
2012), causing concern for the state of the stock and 
the sustainability of the fishery. In this study, GBRTs 
are applied to individual length-at-age data for Celtic 
Sea herring to investigate potential environmental and 
fishery-related drivers of the decline in growth.

6.1.2	 Methods

The analysis was conducted using three-winter-
ring (4-year-old) fish, as fish in this age group are 
fully recruited to the fishery and are therefore well 
represented in commercial catch samples. Age and 
length data were available for 35,629 individual herring 
from port sampling collections (1958–2012).

Correlations between length of three-ring fish and 
broadscale climatic indices (AMO and NAO) were 
investigated using general linear models, with 
adjusted degrees of freedom (df) to correct for 
temporal autocorrelation (Chelton, 1984; Pyper and 
Peterman, 1998).

GBRT modelling set-up

The GBRT analysis included a combination of 
explanatory variables describing temperature (SST), 
salinity and feeding conditions (CPR abundance of 
C. finmarchicus, C. helgolandicus and total large 
copepods) during the first growing season (the 
summer after the year of hatching). The population-
related variables were year class strength (estimated 
recruitment) and total stock size in the year of 
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capture. Two measures of fishing mortality were also 
included: mean fishing mortality in year of capture 
and cumulative fishing mortality for that cohort. Month 
of capture was included as an explanatory variable 
to account for seasonal changes in size. The AMO 
index was highly correlated with SST and so was not 
included in the GBRT. Data sources are detailed in 
Table 2.1.

Data were split randomly into two sets: train (50%) 
and test (50%). Randomisation was performed using 
two alternative approaches: randomisation at the level 
of individual (RI) and randomisation at the level of 
year (RY). The RY approach ensured that the model 
was tested using previously unseen combinations of 
explanatory variables. The RI approach avoided the 
introduction of systematic biases between the test and 
the train datasets. An additional three-way spilt was 
performed on the RI dataset: train (50%), test (25%) 
and validation (25%). The model was built, tested and 
optimised using the train and validation sets and the 
model’s performance was confirmed using the test set.

6.1.3	 Results

Overall trends

As previously reported (Lynch, 2011; Harma et al., 
2012), the mean length at age of three-ring herring in 
the Celtic Sea showed a general increasing trend from 
the 1960s until the mid-1970s, followed by a decline 
from the 1970s through to the 2000s (Figure 6.1). 
The mean weight at 25 cm (the average length of a 
three-ring fish) remained stable across the time series, 
indicating that the observed decline in length at age 
did not coincide with a decline in condition.

Correlation with climatic indices

The mean annual AMO index in the first year of 
life was negatively correlated with the mean length 
of three-ring herring (r = −0.65, adjusted df = 10; 
p < 0.001). The decline in size of Celtic Sea herring 
during the late 1970s and the 1980s coincided with 
a steady increase in the AMO index and an eventual 

Figure 6.1. Mean length at age of three-ring Celtic Sea herring in centimetres. Measurements are rounded 
to the nearest 0.5 cm, except in 1967, when measurements were recorded to the nearest 0.1 cm. The solid 
blue line is the prediction obtained from the RI model and the dashed blue line is the prediction obtained 
from the RY model. Black dots represent individual observations and the black line represents the 
observed mean length
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transition from a negative to a positive phase in the 
mid-1990s. Earlier increases in the size of Celtic Sea 
herring during the 1960s and 1970s corresponded 
with a negative phase of the AMO and a steady 
decrease until the mid-1970s (Figure 6.2). There was 
no significant correlation between mean length and the 
NAO index (p > 0.05).

GBRT model results

The mean length of three-ring herring predicted by 
the GBRT models followed similar temporal trends 
to the observed mean length at the three-ring stage, 
although the models tended to underestimate mean 
length at the observed peak of the time series 
(mid-1970s) and overestimate mean length in years 
when the observed mean length was at its lowest 
(mid-2000s) (see Figure 6.1). The relative importance 
of the predictors varied between the RI model and 
the RY model; however, some general trends were 
apparent (Figure 6.3). SST in the first growing 
season was the most important explanatory variable 
in both models. The high variable influence score 
indicates that, relative to the other variables, SST 
was selected most frequently for splitting and had 
the largest influence on predictive power. Variables 
describing population size (totalN) and food supply 
(CPR-estimated abundance of C. finmarchicus in 
area C3 – cfinC3; CPR-estimated abundance of 

C. helgolandicus in area C3 – chelC3) were also 
included in the top four most influential predictors; 
however, their influence was much less marked than 
that of SST. Other descriptors of food availability 
(CPR-estimated abundance of C. helgolandicus in 
areas C3 and D4 – chelC3 and chelC4, respectively), 
abundance of recruits (recr), salinity (sal), fishing 
pressure (mean lifetime fishing pressure – cumf 
– and fishing pressure in year of capture – fbar) 
and month of capture (month) had only a minor 
influence on the model predictions for the Celtic 
Sea population.

Nature of the relationships

The partial dependence plots (Figure 6.4) display, 
for a selection of the more influential predictors, the 
marginal effects of each predictor (assuming that 
other covariates are held constant) on fish length at 
the three-ring stage. SST values above 14.1°C were 
associated with a decrease in size of three-ring herring 
in the Celtic Sea. There was some evidence of density 
dependence in the Celtic Sea population: both the RY 
model and the RI model predicted a decrease in length 
at higher population sizes. In terms of relationships 
with food availability, the strongest association was 
the postive correlation between the size of three-ring 
herring and the abundance of C. finmarchicus in area 
C3 (cfinC3).

Figure 6.2. Temporal trends in the mean annual AMO index in the first year of life (red) and the mean 
length of three-ring herring in the Celtic Sea (blue) and the north-west of Ireland (green). 
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Figure 6.3. Relative importance of the variables in the GBRT models. The importance plot for the RI 
model (top) was produced from one GBRT model, whereas the plot for the RY model (bottom) was based 
on 10 GBRT models. Variable influence (VI) scores as a proportion of the maximum for each model are 
shown on the x-axis. The numbers beside each bar indicate the VI scores as a percentage of the total for 
each model.

Figure 6.4. Partial dependence plots from the RI model showing relationships between length of three-
ring herring and SST (°C) during the first growing season, C. finmarchicus abundance (numbers 3m–3) in 
area C3 (cfinC3) and total population size (numbers) (totalN).
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6.1.4	 Conclusions

The observed correlation between herring growth and 
the AMO index is consistent with previous reports 
of climate-driven multidecadal fluctuations in the 
distribution and abundance of small pelagic clupeids 
(Alheit et al., 2014). During a previous warm period, 
which coincided with a positive phase of the AMO 
(1930s–1960s), the abundance of herring in the 
English Channel (at the southern limits of the species 
distribution) decreased and its distribution contracted 
(Southward et al., 1988), while the abundance of the 
more northerly Norwegian spring-spawning herring 
population increased (Toresen and Ostvedt, 2000). 
Concurrent changes in the dynamics of other pelagic 
clupeids (anchovy, sardine, sardinella and sprat) and 
similar trends during the more recent warming period 
(after the mid-1990s) are indicative of climate-driven 
ecosystem regime shifts, which may be reflected in 
the AMO signal (Edwards et al., 2013; Alheit et al., 
2014, 2019). The results of this study demonstrate that 
climatic fluctuations can manifest as changes in fish 
growth as well as abundance.

The GBRT approach proved useful for detecting non-
linear relationships and step changes that would have 
been difficult to detect using traditional parametric 
approaches. In particular, a marked decrease in 
length above a threshold temperature (14.1°C) was 
detected. The metabolic optimum for herring occurs 
at around 15–16.1°C, with a subsequent decrease 
in metabolic rate occurring with further increases in 
temperature (Bernreuther et al., 2013). During the 
study period, mean temperatures in the Celtic Sea 
from April to August ranged from 12.7°C to 14.7°C. 
Maximum temperatures in August remained below the 
thermal optimum during colder years but exceeded 
it in warmer years, reaching highs of above 18°C. As 
sea temperatures rose because of the combined effect 
of a positive phase of the AMO and climate change, 
herring in the Celtic Sea were more likely to encounter 
temperatures that were suboptimal for growth and 
metabolism. In the absence of individual temperature 
histories, it is not possible to determine if this exposure 
would be sufficiently frequent or prolonged to produce 
such a pronounced decline in growth. However, 
it is plausible that the direct effects of increasing 
temperature on growth and metabolism could at least 
partly contribute to the decline.

At northern latitudes, growth of juvenile herring tends 
to increase with increasing temperature (Husebo et al., 
2007). It has been proposed that global warming could 
lead to higher growth of young age classes, slower 
growth of older individuals and a shorter lifespan 
of herring (Brunel and Dickey-Collas, 2010). The 
results of this study suggest that predicted positive 
temperature–growth relationships might not apply 
when temperatures exceed a certain threshold. This 
signals caution when extrapolating climate change 
effects from contemporary field observations and 
highlights the importance of considering biological 
responses at distributional extremes.

6.2	 Investigating Coherency in 
Growth Patterns across Multiple 
Fish Species in the Celtic Sea

6.2.1	 Background

If changes in fish growth reflect ecosystem-wide 
change or even a regime shift, synchronous changes 
across multiple species are expected. This study used 
dynamic factor analysis to determine the extent to 
which weight-at-age time series display synchronous 
changes across multiple pelagic (herring, mackerel 
and blue whiting) and demersal (cod, haddock, 
plaice, sole and whiting) fish species that occur in the 
Celtic Sea.

6.2.2	 Methods

Weight-at-age data were obtained from ICES stock 
assessment reports for three pelagic (herring in 
ICES sub-area 7g–h and 7j–k, mackerel in 1–8, 14 
and 9a and blue whiting in 1–9, 12 and 14) and six 
demersal (cod in 7e–k, haddock in 7b–k, plaice in 
7e, plaice in 7j–k, sole in 7e and whiting in 7b–c and 
7e–k) species that occur in the Celtic Sea (detailed 
in Table 2.2).The analysis was conducted using a 
two-step approach. A series of generalised additive 
mixed models (GAMMs) were used to model the mean 
weight for each species as a function of age (modelled 
as a spline), with year of birth and year of capture 
included as random effects. Random effects and 
variance–covariance matrices were extracted for each 
year. DFA was then fitted to the year of birth and year 
of capture random effects, using variance–covariance 
as an observation error. SST was then included as a 
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covariate in the DFA and the model fits were assessed 
(with and without the covariate).

6.2.3	 Results

Although herring in the Celtic Sea showed the most 
pronounced change in weight at age, the random 
effects plots showed that the growth of other species 
had also changed (e.g. plaice in ICES subarea 7j–k; 
Figure 6.5). The best-fitting DFA model included 
two trends, indicating some coherency in growth 
trends across species. The inclusion of SST as a 
covariate improved the model fit: both trends were 
negatively correlated with SST at time lag 0 (r = −0.65 
and −0.36 for trends 1 and 2, respectively). The first 
trend showed an increase in growth during the 1960s 
followed by a steady decline from the 1970s, which 
became steeper around 2008 (Figure 6.6). The second 
trend showed a decline occurring in the 1990s. Herring 
made the largest contribution to the first trend and blue 
whiting had the strongest loading on the second trend. 
Both species loaded positively on the trends, indicating 
a decline in weight at age. Plaice in subarea 7j–k also 
loaded positively on trend 1. Other species had minor 
negative loadings on the trends (e.g. whiting on trend 
1 and haddock on trend 2), indicating a tendency for 
increased weight at age; however, positive loadings 
were stronger and more common. Overall, the trends 
were dominated by changes in the size of herring, blue 
whiting and plaice in subarea 7j–k.

6.2.4	 Conclusions

The GAMM models combined with DFA proved 
effective at extracting temporal signals from complex 
multivariate time series.

The results indicate that, although there is substantial 
variation between species, there is some coherency 
across the growth trends examined, with an overall 
tendency for reductions in fish weight in the Celtic Sea 
associated with increasing SST. Observed declines 
in growth across species are consistent with trends 
in the community-level indicator “typical length” 
used in the 2017 OSPAR intermediate assessment, 
which captures changes in age structure and species 
composition, as well as changes in size at age. Trends 
in typical length show a decline in the Celtic Sea from 
the 1990s to 2005, suggesting that fish communities 
are now more dominated by small-bodied fish.

6.3	 Reconstructing Growth Histories 
across Multiple Fish Species in 
the Celtic Sea using Multidecadal 
Otolith Collections

6.3.1	 Background

Sustained and detailed long-term datasets that capture 
individual-level variation are extremely valuable for 
understanding how organisms respond to population 
change but are rare in ecological studies. Archived 
otoliths (fish ear stones), collected for the purposes 
of age estimation and stock assessment, which are 
held by fisheries laboratories all over the world, hold 
a wealth of individual-based information collected 
over multidecadal timescales (Black et al., 2013). 
Because of the chronological nature of otolith growth, 
visible increments can be related to specific time 
periods in a fish’s life. Otolith size is proportional to 
fish size and so otolith increment widths provide a 
proxy for fish growth during the corresponding period 
of the life history. Sclerochronological techniques 
allow the reconstruction of past growth histories 
from annual otolith increments and the investigation 
of temporal trends in growth at an individual and 
a population level (Panfili et al., 2002; Black et al., 
2013; Rountrey et al., 2014). Coupling these data with 
environmental and biological time series can help to 
elucidate drivers of observed change (van der Sleen 
et al., 2017; Matta et al., 2018). The value of otolith 
collections is increasingly being realised through 
otolith biochronology studies (Morrongiello et al., 
2012). Growth time series reconstructed from otoliths 
are proving useful as indicators of ecosystem change 
and regime shifts (van der Sleen et al., 2017; Matta et 
al., 2018).

In Ireland, national collections of otoliths are currently 
inadequately curated and their value as recorders 
of ecosystem change is underutilised. In this study, 
material from otolith collections held by the Marine 
Institute were used to investigate multidecadal 
(1980s–2010s) variability in the growth of three 
species from the Celtic Sea: plaice (Pleuronectes 
platessa L.), herring (C. harengus L.) and haddock 
(Melanogrammus aeglefinus L.). Mixed-effects 
modelling techniques were used to partition 
environmentally driven interannual growth variability 
and density dependence from age-related, sex-related 
or cohort-specific trends. The relative importance of 
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Figure 6.5. Random effects plots from GAMM models of mean population weight at age for selected fish 
species showing broad temporal trends in growth. The model predictions are shown by the solid line. 
The shaded area indicates the standard error of the model predictions. Random effects of birth year 
(ybir) are shown in the left panels; random effects of capture year (ycap) are shown in the right panels. 
Labels on the right indicate the stock names (blue_whiting: blue whiting in 1–9, 12 and 14; cod_e_k: cod 
in 7e–k; haddock_b_k: haddock in 7b–k; herring: herring in 7g–h and 7j–k; mackerel: mackerel in 1–8, 
14 and 9a; plaice_e: plaice in 7e; plaice_jk: plaice in 7j–k; sole_e: sole in 7e; whiting: whiting in 7b–c 
and 7e–k).
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population-specific and broadscale ecosystem-level 
change in the Celtic Sea were examined.

6.3.2	 Methods

Otoliths were obtained from collections held by 
the Marine Institute, which originated from port 
sampling and scientific surveys in the Celtic Sea. 
Sample sizes and temporal coverage for each 
species are summarised in Table 6.1. Otolith images 

were captured using a stereomicroscope with 
digital camera, interfaced with a PC. Annual growth 
increments were measured using image analysis 
software, along a consistent transect, from the otolith 
core to the edge.

For each species, GAMMs were used to model 
increment width as a function of the fixed effects – age 
at increment formation (age), age at capture (AAC) 
and otolith side (side) – and the random effects – 
year of increment formation (year), year of hatching 

Figure 6.6. Trends (bottom panels) and factor loadings (top panel) from the DFA model with SST included 
as a covariate.
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(birth year) and fish ID. The inclusion of fish ID as a 
random effect accounted for the non-independence of 
repeated measurements from the same otolith. Once 
the optimal random- and fixed-effect structure was 
determined, environmental (temperature, salinity, wind 
patterns, zooplankton and phytoplankton abundance 
indices), population (stock size and recruitment) and 
fishing-related (estimated fishing mortality) covariates 
were added to each optimal model in a stepwise 
manner. Model selection was conducted using Akaike 
information criteria (AIC).

6.3.3	 Results

The best-fitting GAMM for each species is shown in 
Table 6.2. As expected, otolith growth declined with 
age across all three species. Age explained most 
of the variability in growth in haddock and herring 
whereas in plaice there was a relatively high proportion 
of individual and unexplained variability (explained 
deviance estimates; see Table 6.2).

In all three species, otolith growth decreased with age 
at capture; the increment width at each previous age 
was lower in older fish (Figure 6.7). This may indicate 
selective mortality of faster growing fish (e.g. as a 
result of fishing) or may reflect the later recruitment 
of slower growing fish to the fishery. The influence of 
age at capture was greatest for plaice (3.4% explained 
deviance) followed by haddock (0.2% explained 
deviance) and herring (0.034% explained deviance) 
(see Table 6.2).

The year random effect showed considerable 
interannual variation in otolith growth across the three 
species (Figure 6.8). Coherency in growth across 
species was detected: the haddock annual growth 
signal was significantly correlated with the annual 
growth signal for plaice (r = 0.41; p < 0.05) and the 
cohort growth signal for herring (r = 0.55; p < 0.01). 
The correlation between the herring and the place 
annual growth signal was not significant (r = 0.19; 
p > 0.05).

When the year random effect was substituted 
for environmental, population and fishery-related 
covariates, some evidence of density dependence 
was detected: growth of herring and haddock declined 
at higher stock sizes. Growth of plaice declined with 
increasing salinity and with positive values of the AMO 
index (see Figure 6.7).

6.3.4	 Conclusions

The study highlights the value of otolith collections 
for describing temporal trends in growth over 
extended time periods and investigating associations 
with environmental conditions and anthropogenic 
pressures. The underlying annual growth signals, after 
accounting for intrinsic sources of variation in growth, 
showed considerable interannual variability. Significant 
correlations in annual growth signals across species 
may be indicative of an ecosystem-wide response to 
an external signal.

Table 6.1. Sample size, age range and temporal coverage for each species

Species Sample size Age range (years) Collection years Growth time series temporal coverage 

Plaice 402 1–10 1994, 1996–1998, 2005–2013 1985, 1987, 1989–1997, 1999–2012

Haddock 486 1–6 1993, 1995–2005, 2009–2014 1990–2013

Herring 529 1–9 1998–2014 1993–2013

Table 6.2. Terms included in the best-fitting GAMM of otolith increment for each species

Species

Terms in optimal model
Residual 
devianceFixed effects (explained deviance) Random effects

Plaice Age*side (38%), AAC (3.4%) Year (2.7%), fish ID (11.7%) 44.2%

Haddock Log(age) (88%), AAC (0.2%) Year (0.9%), fish ID (0.8%) 10.1%

Herring Log(age) (93%), AAC (0.034%) Birth year (0.45), fish ID (0.2) 6.3%
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Figure 6.7. Plots showing predicted relationships between otolith growth and significant covariates from 
the best-fitting GAMMs.
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Figure 6.8. Random effects from the GAMMs plotted against year (plaice and haddock) and birth year 
(herring) to show annual trends in otolith growth (a–c) and interspecies cross-correlations in the annual 
growth signals (d).

(a)

(b)

(c)

(d)
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7	 Detecting Step Changes in the Celtic Sea Ecosystem 
using Bayesian Online Change-point Detection

7.1	 Background

Technological advances are steadily enhancing our 
capacity to monitor the marine environment while 
international collaboration and online data sharing has 
made long time series of biological and environmental 
data increasingly accessible. This infrastructure can 
support research into marine ecosystem change, 
allowing us to understand change and develop 
appropriate management responses. To unlock 
that potential requires statistical methods that can 
effectively extract clear signals from complex and 
highly variable multivariate data. An important form of 
change is that which takes place over a short period 
of time (a change point) – time series may change 
state abruptly from one regime to another. From a 
management perspective it is critically important 
that such changes are recognised as quickly as 
possible so that appropriate mitigation measures can 
be taken. Development and application of a method 
for estimating such changes in a fully probabilistic 
framework is the focus of this chapter. The method 
was applied to all of the time series compiled or 
generated as part of the project. These data reflect 
temporal changes in the Celtic Sea ecosystem 
across multiple taxa, trophic levels and physical 
environmental variables.

Change-point detection is complicated by the 
dimensionality of the problem in that, for a series 
with n observations, there exists n possible change 
points, assuming that a change point must occur at 
the point of observation. Many algorithms have been 
developed to estimate change points in time series, 
including sequential t-test analysis of regime shifts 
(STARS) (Rodionov, 2004; Rodionov and Overland, 
2005), Hamilton’s Markov-switching filter (Hamilton, 
1989) and online change-point detection algorithms 
(Page, 1955; Lorden, 1971; Desobry et al., 2005). 
STARS focuses on changes in the mean, whereas the 
Hamilton filter assumes a set number of underlying 
states that the system switches between. In contrast, 
online change-point detection algorithms work with 
higher moments of the data (particularly the variance).

Frequentist algorithms such as those presented above 
rely on assumptions about repeated sampling to draw 
inference on the uncertainty of the system (Jaynes, 
2003). Bayesian modelling draws inferences on the 
data using prior information and likelihood and does 
not rely on concepts of repeated sampling. Adams and 
MacKay (2007) developed a BOCPD algorithm, which 
has useful properties such as:

	● being able to work online (no need to refit the 
model as new data become available);

	● providing a full probabilistic description of the 
change-point model, including changes to the 
mean state and variance;

	● making no assumption about the number of 
regimes;

	● having easily interpreted run length probability 
distributions, affording early detection frameworks;

	● having offline (smoother mode) capabilities.

As such, the BOCPD algorithm covers many of 
the requirements of the analytical methods of this 
component of the project.

Perälä and Kuparinen (2015) and Perälä et al. 
(2017) applied the BOCPD algorithm to fish breeding 
success (recruits per spawner and dynamic parameter 
estimation). Changes were detected in key rates 
governing the population dynamics, highlighting that 
fish populations are dynamic and can undergo sudden 
changes. To our knowledge there are no systematic 
applications of BOCPD to time series across multiple 
ecosystem components, as is the focus here.

7.2	 Method

7.2.1	 Model specification

A run length distribution is the main feature of the 
BOCPD algorithm (Adams and MacKay, 2007). For 
a given point in time (typically annually here), the 
run length distribution is the probability distribution 
across all possible run lengths in that year. For the 
next year, the current run length can either continue 
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or change such that a new run starts. Each possible 
run has parameters governing the mean and the 
variance (here, alternative formulations are possible) 
of the run starting in that year. For example, if a time 
series began in 1960, the parameters of the 1960 
run are updated with each new observation and are 
effectively running means and variances from 1960 to 
a given time point. Runs are started at each time point 
although they may have a low probability of being the 
dominant run. The probability that each observation 
arises from a given run will be likely to change over 
time, for example, the 1960 run might not describe the 
1980s observations well. As such, the probability that a 
given run describes the data is updated and a run may 
either continue or collapse in any year.

The BOCPD algorithm provides a fully probabilistic 
description of the data, consisting here of:

	● Underlying predictive model. Here, assumed to 
be a normal likelihood with a normal-gamma prior 
distribution. A normal-gamma prior distribution 
is conjugate to a normal likelihood, resulting in a 
posterior distribution that is also normal-gamma. 
This allows for straightforward updating of the 
parameters without the need for Markov chain 
Monte Carlo sampling of the posterior distribution.

	● Priors. Hyperparameter priors were set on 
the mean location, mean scale, precision 
shape, precision inverse scale and hazard rate 
parameters using the methods of Perälä and 
Kuparinen (2015). The hazard rate here is the 
prior probability of a change and can be expressed 
in inverse units as the expected time between 
change points. We set the change-point hazard 
rate at 1/10 (the same as Perälä and Kuparinen, 
2015). Note that the priors are coupled with the 
data so the actual posterior frequency will be likely 
to be that implied by the prior, although testing 
sensitivity to this parameter is important.

	● Data. The BOCPD algorithm was fit to each time 
series separately to avoid any a priori grouping 
of series. Where there were missing years, linear 
interpolation was used. Linear interpolation was 
considered more conservative here in that forward 
projecting methods would assume that the next 
time point was the same as the previous and 
inflate the change-point probability when the next 
true observation arrives. All series were fit to the 
entire series but presented from 1950 onwards 

as, prior to this, only a relatively small number of 
environmental series were available.

Series were grouped according to variable type 
(e.g. wind, fish breeding success) within broad 
ecosystem component categories (e.g. environmental, 
plankton) to facilitate presentation and interpretation of 
the results.

Recursion updates were performed in the R statistical 
environment (R Core Team, 2018), with code 
developed specifically for fitting and interpreting the 
BOCPD algorithm.

7.2.2	 Model output

For each series, a summary plot is presented 
consisting of the data, estimated run length probability 
distribution over time, fitted means and standard 
deviation (both online – filtered – and offline – 
smoothed – using all of the data past a given time 
point in contrast to the filter, which works only up to 
a given time point). These by-series plots are useful 
for querying subsequent summaries across series. 
Note that the run length distributions are currently 
presented as filtered online versions. Attempts 
to smooth the run lengths resulted in incorrect 
run lengths, although this is possible (Perälä and 
Kuparinen, 2015). Further work on smoothed run 
length distributions will improve this.

To summarise across series, we plot the probability 
of a change point for each series for each year. As 
a highly probable change point may not emerge 
until a number of years after the change (Perälä and 
Kuparinen, 2015), we use a 2-year lag but plot the run 
lengths at times corrected for the lag. Two versions 
of this summary plot are presented: a full probabilistic 
version with probabilities between 0 and 1, and a 
threshold version that displays only those change-
point probabilities > 0.5.

To further summarise the data we sum the probabilities 
across each variable group and divide by the number 
of series in that group to give an average probability 
of a change point in a given year across all series 
present in that year. As the number of series present 
changes over time (coverage), we use the opacity of 
the colour to denote the coverage (proportion of series 
from that group present in a given year).
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7.3	 Results

7.3.1	 By-series fits

Most series displayed at least some evidence for 
changes to either the mean level or the variance over 
their time course. Some evidence is defined as having 
even a low probability of change. High probabilities 
of change points are discussed later when threshold 
results are presented (see sections 7.3.3 and 7.3.4).

Selected fits illustrate features of the BOCPD algorithm 
applied here. Where abrupt changes occur in the 
distribution of the data (typically the mean although the 
standard deviation is also included), the model picks 
up on the changes quickly and with high probability 
(e.g. C. finmarchicus in Figure 7.1). This contrasts 
with alternative approaches such as the Kalman 

filter, which take longer to adjust the mean level for a 
sudden change (Peterman et al., 2000). Where the 
data display a continual trend, the model attempts to 
account for this by estimating multiple change points 
(e.g. guillemot time series in Figure 7.2) – this fit also 
illustrates a difficulty with priors in that the prior for the 
variance was too large (based on the marginal limits) 
and took a long time to update in the model. Highly 
variable data also present the model with a challenge, 
with many low-probability signals of changes (e.g. 
coefficient of variation of wind direction in Figure 7.3).

7.3.2	 Across-series change points

Plotting change-point probabilities across series 
enables comparison of the timing of changes across all 

Figure 7.1. BOCPD algorithm fit to C. finmarchicus annual anomaly series illustrating how the model 
picks up on abrupt changes in the mean. The filtered run length probability plot shows the probability of 
each run length in purple shading and the estimated change points as dashed vertical lines. Fitted means 
and standard deviation plots show the filtered estimates (online) as solid lines and smoothed estimates 
(offline) as dashed lines.
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series (Figures 7.4 and 7.5). The results are discussed 
by ecosystem component and variable group.

Environment

	● Temperature: Change points occurred around 
1987, with the mean latitude of the 13°C isotherm 
moving abruptly north and the mean annual SST 
increasing (note that these variables are highly 
correlated).

	● Wind: The intensity and duration of the prevailing 
south-westerly wind displayed evidence for 
change points in 1990, with an increase in the total 
number of hours and a decrease in wind strength, 
which was elevated between 1985 and 1990.

	● Salinity: Similarly, salinity at 5 m and 55 m 
displayed some evidence for a change around 

1987 and 1988, with salinity increasing from a 
period of lower salinity during the late 1970s and 
early 1980s.

	● Climatic indices (SPG, NAO, AMO; labelled 
“Index” in Figure 7.5) displayed weak evidence for 
change points at a later time point around 1995. 
These changes are weakly reflected in low but 
non-zero probabilities of change points in other 
environmental variable series at that time (wind, 
temperature).

Plankton

	● Phytoplankton displayed some evidence for an 
increase in chlorophyll a concentration at a similar 
time to the changes in the climatic indices (around 
1995).

Figure 7.2. BOCPD algorithm fit to the guillemot abundance series illustrating how the model attempts 
to account for trends by estimating multiple uncertain change points in the mid-2000s. The filtered run 
length probability plot shows the probability of each run length in purple shading and the estimated 
change points as dashed vertical lines. Fitted means and standard deviation plots show the filtered 
estimates (online) as solid lines and smoothed estimates (offline) as dashed lines.
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	● Zooplankton: Among the zooplankton, marked 
change points were observed in one of the 
OSPAR PH2 indices of total copepod abundance 
(OSPAR PH2ZOO Anomaly ECO3CS) in 2000, 
with a decrease and subsequent increase. 
Calanus finmarchicus Annual Anomaly D4 
displayed four marked change points separated 
by approximately 17 or 18 years. Hyperiidea 
Annual Anomaly D4 displayed a marked change 
to higher abundance around 2009. Although many 
of the other series showed evidence for change 
points, the probabilities were typically weak and 
below the threshold of 0.5. This result may be 
masked by strong trends and directions in trends, 
however (see the Euphausiacea Annual Anomaly 
D4 or OSPAR PH2ZOO Anomaly ECO5CS fits on 
GitHub). The gelatinous zooplankton, Doliolidae 
and Thaliacea, displayed evidence for change 
points around 1997, with decreases in abundance 
following highly variable periods on a background 

of a generally increasing trend. Towards the end of 
the series both groups increased again.

Fish

	● Weight: The year and birth year random effects 
(from the GAMMs of mean weight at age 
described in section 6.2) showed a diversity of 
change points with varying evidence across time 
and no clear pattern across series. Here, we 
focus on significant change points (greater than a 
threshold of 0.5; see Figure 7.5) that occurred for 
the following: blue whiting year effect in 1990 and 
birth year effect in 2005; mackerel year effect in 
1990; plaice in area 7e year effect in 1998 and in 
area 7j–k year effect in 1999; and sole birth year 
effect in 1971.

	● Growth: Change points were detected for haddock 
growth year effects (from the GAMMs of otolith 
growth measurement described in section 6.3) 

Figure 7.3. BOCPD algorithm fit to the coefficient of variation (CV) of the wind direction series illustrating 
how the model responds to highly variable series by estimating multiple change points.
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Figure 7.4. Change-point probabilities across series. Colour scales with dark purple denoting a 
probability of 1 and white denoting a probability of 0. Horizontal lines appear where no data exist for that 
series. CV, coefficient of variation. 
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Figure 7.5. Change points across series. Each coloured cell represents a change-point probability greater 
than a threshold of 0.5. Horizontal lines appear where no data exist for that series. CV, coefficient of 
variation.
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in 1992 and for plaice growth random effects in 
2009.

	● Breeding success: Similarly, fish breeding success 
displayed a diversity of change points across time, 
with change points occurring for whiting decrease 
in 2000; blue whiting increase in 1994 and 
subsequent decrease in 2004; megrim potential 
increase in 2014 followed by a rapid return; horse 
mackerel decrease at the beginning of the series 
in 1982; herring increase in 1978; cod decrease in 
2010; and bass increase in 1986.

Seabirds

	● Breeding success: Guillemot breeding success 
showed evidence for a change point in 2006 
to lower levels. Kittiwake breeding success 
declined in 2000, whereas razorbill breeding 
success displayed a marked decrease in 2009. 
The OSPAR B3 indicator of marine bird breeding 
failure (water column feeders) also had a change 
point in 2009 to a higher index (more failures).

	● Abundance: The kittiwake abundance index had 
a change point in 1998, showing a considerable 
decline.

7.3.3	 Change-point summary

Average change points across all series demonstrate 
periods of coherent changes across environmental 
component series (Figures 7.6 and 7.7), with marked 
changes occurring in the late 1980s and mid-1990s. 
These changes are also reflected in changes in 
the single phytoplankton series presented here 
(C. finmarchicus annual anomaly; see Figure 7.1). For 
other ecosystem components important changes occur 
but are not tightly coupled or apparently cascading 
across series. For example, fish breeding success 
shows a consistently low background rate of change 
points across all series over time, which is also the 
case for zooplankton (C. finmarchicus annual anomaly; 
see Figure 7.6). Although the changes are not tightly 
coupled across series, it is critically important to note 
that these changes may be highly significant for given 
ecosystem components.

7.4	 Discussion

The BOCPD algorithm provides a fully probabilistic 
framework to estimate run length probabilities and 

distributions for the posterior distribution of the states 
across time (see Figures 7.1–7.3). A probabilistic 
framework provides quantified evidence for change 
points over time and, as such, is of central utility to 
informing cross-system monitoring of environmental 
and biological series. In this section, the main results 
are briefly discussed, caveats highlighted and future 
ideas presented.

7.4.1	 Change-point evidence and 
synchronicity

Evidence for change points was present in each group 
and ecosystem component. This ranged from a low to 
non-negligible probability of change points for some 
series to high probabilities of change points above the 
threshold (see Figures 7.4 and 7.5). We can therefore 
say that the Celtic Sea system as represented by 
monitored series is highly dynamic and undergoes 
changes over varying timescales.

Tightly coupled environmental changes occurred 
around the late 1980s and early to mid-1990s (see 
Figures 7.4–7.7). Importantly, the series studied 
represent temperature, salinity and wind drivers, all 
of which are critically important components of the 
environmental conditions experienced by the biological 
ecosystem components.

We did not observe evidence of simultaneous 
or cascading changes in the filtered run length 
probabilities from the biological series (see Figures 7.4 
and 7.5). There may be a number of methodological 
and mechanistic reasons for this:

	● Methodological:
	– Currently, filtered run length probabilities are 

used with a lag. For some series this lag may 
be too short to demonstrate a given change. 
Smoothed run length probabilities that are 
obtained by hindcasting the system could 
alter this and potentially show more coherent 
changes across species. We doubt that the 
results will change radically from the smoothed 
probabilities, but this is presented as a 
possibility.

	– The model is sensitive to the priors on the 
variance parameters. It is possible that more 
subtle changes have been missed because of 
prior assumptions. Again, smoothed run length 
distributions would address this but, in addition, 
robust ways of specifying the priors without 
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Figure 7.6. Average change-point probability across all series present in a given year. The opacity of each 
bar represents the proportion of series from a given group present in a given year (termed coverage).
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Figure 7.7. Proportion of series above a threshold of 0.5 in a given year. The opacity of each bar 
represents the proportion of series from a given group present in a given year (termed coverage).
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biasing the results of the model should be 
developed.

	– Observation window – from a time series 
perspective even the longest series are 
relatively short. It may be that the system has 
not been observed for long enough or that the 
resolution of the observation is too coarse to 
observe synchronous change.

	● Mechanistic:
	– The Celtic Sea is a relatively open system, 

connected by a contiguous continental shelf 
and a dynamic open hydrography. Such 
openness may preclude synchronous changes 
across all series, which are additional to local 
forcing under the influence of external forcing.

	– We observe synchronicity in changes in 
environmental series; density-dependent and 
top-down effects in a diverse system may result 
in different community effects from system-wide 
cascading or synchronous change.

	– Complex non-linear dynamics are expected 
to show change points and regime shifts 
(Sugihara et al., 2012) in communities. It is 
also possible that complex dynamics alter our 
expectations of cascading or synchronous 
changes across series.

	– Although the biological series observed do 
not appear to display coherent changes 
across series, we stress the importance of 
methodological improvements that may affect 
this result and also highlight the important result 
that changes clearly do occur for many series 
and that this has important consequences for 
management.

7.4.2	 Caveats

An important caveat to the analyses presented is 
the absence of a hindcasted run length probability 
distribution. This absence is purely technical, with the 
attempted implementations not working as expected. 
It is anticipated that this can be improved before peer-
review publication of the results. Notwithstanding, we 
present the filtered results that use the data to a given 
point in the time series and that are critically important 
in the online (i.e. real-time) detection of change points.

Development of improved priors would also assist in 
the performance of the filtering stage of the algorithm. 
This could simply be robust versions of those 
algorithms implemented to deal with spikes when 

specifying priors from summary measures of the limits 
of the data.

Although the present algorithm works on the states 
(here, the absolute values of the series), it has some 
difficulty working with data with clear trends (see 
Figure 7.2). It would also be of interest to investigate 
the rate of change of selected series over time in 
which we identify change points not in the level but 
in the rate of change. Preliminary attempts to do so 
were hampered by a high level of variability, resulting 
in highly variable rates of change. Although it should in 
theory be possible for this to be identified in the model 
as a change in variance (volatility), a better approach 
might be to adopt the standard in functional data 
analysis of pre-smoothing the data before differencing 
(Ruppert et al., 2003) while estimating breakpoints 
in the rate of change. Adopting an approach of 
monitoring both the state and the rate of change 
for change points would form a powerful additional 
framework using data already collected.

7.4.3	 Future development

To fully realise the potential of the algorithms 
developed, it is important that the data are continually 
updated and results reported. This would enable:

	● monitoring and reporting on change across series 
at various aggregation levels (e.g. Figures 7.1, 7.4 
and 7.7) and thresholds;

	● continual methodological development to produce 
accurate evidence to support management 
decisions, in particular multivariate extensions in 
which the number of run length distributions can 
be lower than the number of series;

	● a “go-to” location for further scientific development 
(e.g. hypothesis development) and management 
development;

	● the development of a modular framework that is 
transferrable to other systems.

It is important to recognise that abrupt changes have 
and will occur in the Celtic Sea and that methods 
to analyse such changes have been developed, 
coupled with ways of communicating such changes 
at various levels of aggregation. In a future of further 
predicted change we consider such frameworks vital 
for providing cutting-edge advice on sustainable 
management.
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8	 Overall Recommendations

	● Sustain long-term datasets. The project highlights 
the value of long-term biological datasets for 
understanding ecosystem change. Some of the 
datasets used within the project were collected 
outside national data collection programmes and 
yet they are useful for ecosystem monitoring and 
could contribute to assessing progress towards 
conservation targets (e.g. under the MSFD). For 
example, the sunfish time series, sourced and 
digitised as part of this project, is collected largely 
by volunteers as part of a seabird monitoring 
programme and provides a presence/absence 
and abundance indicator for a fish species that is 
not adequately assessed by fisheries monitoring 
programmes. As a potential indicator of increasing 
jellyfish abundance and more widespread 
ecosystem change, this time series could 
contribute to MSFD monitoring under Descriptors 
1 (Biodiversity) and 4 (Food webs). The need 
for a balanced and integrated ocean-observing 
system has been highlighted by the European 
Marine Board (Benedetti-Cecchi et al., 2018). 
At a national level, long-term support should be 
provided to maintain extended ecological time 
series and to integrate them with data resources 
from national monitoring programmes.

	● Implement statistical methods for handling 
observer time series. The European Marine 
Board has highlighted the value of citizen science 
initiatives for enhancing observation capacity 
while also increasing public awareness of the 
importance of biological observation, building 
public confidence in the scientific process 
and fostering connectedness with the marine 
environment (Benedetti-Cecchi et al., 2018). 
Data from citizen science programmes are more 
prone to sources of imprecision and bias than 
data collected through rigorous scientific surveys. 
Appropriate statistical treatment of these data 
can account for this error to effectively detect the 
underlying long-term trends in the time series and 
can also be used to refine the design of observer 
programmes. In this study, the analysis of the 
sunfish time series showed that sunfish detections 
per unit effort increased as observer number and 

watch duration increased. The value of the Cape 
Clear observer programme for monitoring sunfish 
in the Celtic Sea could be enhanced by ensuring 
that observer numbers and watch duration are 
maintained at as high a level as possible. It is 
recommended that the statistical approaches 
to observer data applied within this project are 
implemented more broadly to maximise the 
value of national observer datasets for informing 
management decisions. This could be achieved 
by involving statisticians in the design of citizen 
science initiatives and the subsequent analysis of 
time series.

	● Preserve biochronological material from national 
fisheries monitoring programmes. Under the 
MSFD, the demographic characteristics of 
fish populations (including age/size structure 
and growth) should be maintained at levels 
that are indicative of a healthy population 
and not adversely affected by anthropogenic 
pressures. However, for demographic indicators, 
pressure–state relationships are complex 
and subject to natural and climate-related 
variability, and no targets or reference points 
have been established (Marine Institute, 2015). 
Climate-driven changes in demographics are of 
particular concern for the future management of 
fisheries and marine ecosystems and the need 
to examine the most likely changes in growth 
under future climate scenarios is recognised 
(DAFM, 2019). Understanding the complex 
relationships between fish growth, climate and 
fishing requires detailed individual-level data that 
capture inherent variability in the response. Otolith 
growth measurements are particularly valuable 
in this respect because they describe how an 
individual fish has responded to its environment 
throughout its life cycle. This project demonstrates 
how the analysis of individual growth histories in 
otoliths can be used to partition intrinsic sources of 
variability from environmental and fishing-related 
effects. Extended otolith biochronologies capture 
long-term changes in growth and can help to 
predict future response to climate change. Every 
year large numbers of fish otoliths and scales are 
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collected as part of national fisheries monitoring 
programmes to derive individual age estimates, 
which are subsequently aggregated to produce 
population-level estimates of size and abundance 
at age. Currently, the rich individual-level data 
contained in these structures are underutilised 
and systems for curating the material are lacking. 
It is recommended that the preservation of these 
valuable archives is prioritised to make them 
available for research into climate- and fishing-
related influences on fish demographics.

	● Monitor changes in wind-driven circulation and 
larval dispersal. The Climate Change Sectoral 
Adaptation plan for the seafood sector states that 
“continued monitoring of the spatial distributions 
of commercially exploited fish stocks is essential 
to support future management” (DAFM, 2019). 
This study demonstrates how changes in 
wind-driven circulation can influence dispersal 
to nursery grounds, with consequences for the 
distribution of adult stocks. Oceanographic 
simulations coupled with field studies of larval 
distribution can provide an early warning of 
potential changes to the distribution of adult fish 
stocks and should be incorporated into fisheries 
monitoring programmes. To support this, better 
knowledge of small-scale local oceanographic 
processes is needed, as well as field evidence of 
larval behaviours.

	● Monitor changes in jellyfish abundance and 
associated food web effects. The pronounced 
increase in the abundance of jellyfish 
(calycophoran siphonophores only) in the Celtic 
Sea since the late 1990s has consequences for 
the food web structure and ecosystem service 
provisioning. Indeed, Haberlin et al. (2019) (see 
Chapter 4) found that siphonophores can at times 
contribute up to 42% of the total zooplankton 
biomass (mg C m−3). Furthermore, the warm 
water gelatinous community of the Celtic Sea 
typically had an approximately 40% greater 
gelatinous biomass than the cold water gelatinous 
community, and therefore jellyfish in warm water 
communities may have a greater predatory 

impact on commercial fish species (Haberlin et 
al., 2019). As the CPR record provides a time 
series of relative abundance for some jellyfish 
groups, it could contribute to the development 
of broadscale food web indicators under the 
MSFD. However, jellyfish indices from the CPR 
samples need to be compared with traditional 
plankton surveys in order to fully resolve what 
species are being captured. For example, under 
tipping points we have begun a retrospective 
examination of historical mackerel eggs survey 
data samples from the Celtic Sea. Comparison of 
these data with historical CPR data will provide 
the much-needed clarification on what the CPR 
samples represent in terms of jellyfish other than 
calycophoran siphonophores. However, it is vital 
for Ireland to start building jellyfish time series that 
are independent of the CPR data so that we can 
examine whether or not there are increases in the 
different gelatinous groups, many of which are 
not effectively sampled by the CPR survey (e.g. 
large scyphozoans and salps). It is recommended 
that some measure of the contribution of jellyfish 
to zooplankton be incorporated into food web 
indicators as these are developed. A recent study 
has highlighted that over half of recent food 
web models using EcoPath have not included a 
jellyfish group (Lamb et al., 2019).

	● Incorporate change-point detection into ecosystem 
monitoring. The BOCPD framework presented 
here provides a means of condensing high 
volumes of complex ecosystem data into a 
single coherent analysis of ecosystem change 
points, allowing shifts to be rapidly identified 
and effectively communicated at various levels 
of aggregation. Incorporation into ongoing 
monitoring programmes would ensure that data 
are continually updated and results reported. This 
approach could be applied to ecosystem indicators 
that have already been prioritised for monitoring 
and could be used to identify variables that display 
significant shifts with societal consequences and 
might warrant inclusion within a Framework for 
Ocean Observing (Lindstrom et al., 2012).
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Abbreviations

AAC	 Age at capture 
AMO	 Atlantic Multi-decadal Oscillation
BOCPD	 Bayesian online change-point detection
CPR	 Continuous Plankton Recorder
CSF	 Celtic Sea front
df	 Degrees of freedom
DFA	 Dynamic factor analysis
DVM	 Diel vertical migration
EWI	 Early warning indicator
G	 Green
GAMM	 Generalised additive mixed model
GBRT	 Gradient boosting regression tree
GES	 Good Environmental Status
ICES	 International Council for the Exploration of the Sea
JNCC	 Joint Nature Conservation Committee
MSFD	 Marine Strategy Framework Directive
NAO	 North Atlantic Oscillation
NG	 No green
PCI	 Phytoplankton Colour Index
PG	 Pale green
RI	 Randomisation at the level of individual
RY	 Randomisation at the level of year
SAHFOS	 Sir Alister Hardy Foundation for Ocean Science
SPG	 Sub-Polar Gyre Index
SSB	 Spawning stock biomass
SST	 Sea surface temperature
STARS	 Sequential t-test analysis of regime shifts
TSB	 Total stock biomass
VPG	 Very pale green



AN GHNÍOMHAIREACHT UM CHAOMHNÚ COMHSHAOIL
Tá an Ghníomhaireacht um Chaomhnú Comhshaoil (GCC) freagrach as an 
gcomhshaol a chaomhnú agus a fheabhsú mar shócmhainn luachmhar do 
mhuintir na hÉireann. Táimid tiomanta do dhaoine agus don chomhshaol a 
chosaint ó éifeachtaí díobhálacha na radaíochta agus an truaillithe.

Is féidir obair na Gníomhaireachta a  
roinnt ina trí phríomhréimse:

Rialú: Déanaimid córais éifeachtacha rialaithe agus comhlíonta 
comhshaoil a chur i bhfeidhm chun torthaí maithe comhshaoil a 
sholáthar agus chun díriú orthu siúd nach gcloíonn leis na córais sin.

Eolas: Soláthraímid sonraí, faisnéis agus measúnú comhshaoil atá 
ar ardchaighdeán, spriocdhírithe agus tráthúil chun bonn eolais a 
chur faoin gcinnteoireacht ar gach leibhéal.

Tacaíocht: Bímid ag saothrú i gcomhar le grúpaí eile chun tacú 
le comhshaol atá glan, táirgiúil agus cosanta go maith, agus le 
hiompar a chuirfidh le comhshaol inbhuanaithe.

Ár bhFreagrachtaí

Ceadúnú
Déanaimid na gníomhaíochtaí seo a leanas a rialú ionas nach 
ndéanann siad dochar do shláinte an phobail ná don chomhshaol:
•  saoráidí dramhaíola (m.sh. láithreáin líonta talún, loisceoirí, 

stáisiúin aistrithe dramhaíola);
•  gníomhaíochtaí tionsclaíocha ar scála mór (m.sh. déantúsaíocht 

cógaisíochta, déantúsaíocht stroighne, stáisiúin chumhachta);
•  an diantalmhaíocht (m.sh. muca, éanlaith);
•  úsáid shrianta agus scaoileadh rialaithe Orgánach 

Géinmhodhnaithe (OGM);
•  foinsí radaíochta ianúcháin (m.sh. trealamh x-gha agus 

radaiteiripe, foinsí tionsclaíocha);
•  áiseanna móra stórála peitril;
•  scardadh dramhuisce;
•  gníomhaíochtaí dumpála ar farraige.

Forfheidhmiú Náisiúnta i leith Cúrsaí Comhshaoil
•  Clár náisiúnta iniúchtaí agus cigireachtaí a dhéanamh gach 

bliain ar shaoráidí a bhfuil ceadúnas ón nGníomhaireacht acu.
•  Maoirseacht a dhéanamh ar fhreagrachtaí cosanta comhshaoil na 

n-údarás áitiúil.
•  Caighdeán an uisce óil, arna sholáthar ag soláthraithe uisce 

phoiblí, a mhaoirsiú.
• Obair le húdaráis áitiúla agus le gníomhaireachtaí eile chun dul 

i ngleic le coireanna comhshaoil trí chomhordú a dhéanamh ar 
líonra forfheidhmiúcháin náisiúnta, trí dhíriú ar chiontóirí, agus 
trí mhaoirsiú a dhéanamh ar leasúchán.

•  Cur i bhfeidhm rialachán ar nós na Rialachán um 
Dhramhthrealamh Leictreach agus Leictreonach (DTLL), um 
Shrian ar Shubstaintí Guaiseacha agus na Rialachán um rialú ar 
shubstaintí a ídíonn an ciseal ózóin.

•  An dlí a chur orthu siúd a bhriseann dlí an chomhshaoil agus a 
dhéanann dochar don chomhshaol.

Bainistíocht Uisce
•  Monatóireacht agus tuairisciú a dhéanamh ar cháilíocht 

aibhneacha, lochanna, uiscí idirchriosacha agus cósta na 
hÉireann, agus screamhuiscí; leibhéil uisce agus sruthanna 
aibhneacha a thomhas.

•  Comhordú náisiúnta agus maoirsiú a dhéanamh ar an gCreat-
Treoir Uisce.

•  Monatóireacht agus tuairisciú a dhéanamh ar Cháilíocht an 
Uisce Snámha.

Monatóireacht, Anailís agus Tuairisciú ar  
an gComhshaol
•  Monatóireacht a dhéanamh ar cháilíocht an aeir agus Treoir an AE 

maidir le hAer Glan don Eoraip (CAFÉ) a chur chun feidhme.
•  Tuairisciú neamhspleách le cabhrú le cinnteoireacht an rialtais 

náisiúnta agus na n-údarás áitiúil (m.sh. tuairisciú tréimhsiúil ar 
staid Chomhshaol na hÉireann agus Tuarascálacha ar Tháscairí).

Rialú Astaíochtaí na nGás Ceaptha Teasa in Éirinn
•  Fardail agus réamh-mheastacháin na hÉireann maidir le gáis 

cheaptha teasa a ullmhú.
•  An Treoir maidir le Trádáil Astaíochtaí a chur chun feidhme i gcomhair 

breis agus 100 de na táirgeoirí dé-ocsaíde carbóin is mó in Éirinn.

Taighde agus Forbairt Comhshaoil
•  Taighde comhshaoil a chistiú chun brúnna a shainaithint, bonn 

eolais a chur faoi bheartais, agus réitigh a sholáthar i réimsí na 
haeráide, an uisce agus na hinbhuanaitheachta.

Measúnacht Straitéiseach Timpeallachta
•  Measúnacht a dhéanamh ar thionchar pleananna agus clár beartaithe 

ar an gcomhshaol in Éirinn (m.sh. mórphleananna forbartha).

Cosaint Raideolaíoch
•  Monatóireacht a dhéanamh ar leibhéil radaíochta, measúnacht a 

dhéanamh ar nochtadh mhuintir na hÉireann don radaíocht ianúcháin.
•  Cabhrú le pleananna náisiúnta a fhorbairt le haghaidh éigeandálaí 

ag eascairt as taismí núicléacha.
•  Monatóireacht a dhéanamh ar fhorbairtí thar lear a bhaineann le 

saoráidí núicléacha agus leis an tsábháilteacht raideolaíochta.
•  Sainseirbhísí cosanta ar an radaíocht a sholáthar, nó maoirsiú a 

dhéanamh ar sholáthar na seirbhísí sin.

Treoir, Faisnéis Inrochtana agus Oideachas
•  Comhairle agus treoir a chur ar fáil d’earnáil na tionsclaíochta 

agus don phobal maidir le hábhair a bhaineann le caomhnú an 
chomhshaoil agus leis an gcosaint raideolaíoch.

•  Faisnéis thráthúil ar an gcomhshaol ar a bhfuil fáil éasca a 
chur ar fáil chun rannpháirtíocht an phobail a spreagadh sa 
chinnteoireacht i ndáil leis an gcomhshaol (m.sh. Timpeall an Tí, 
léarscáileanna radóin).

•  Comhairle a chur ar fáil don Rialtas maidir le hábhair a 
bhaineann leis an tsábháilteacht raideolaíoch agus le cúrsaí 
práinnfhreagartha.

•  Plean Náisiúnta Bainistíochta Dramhaíola Guaisí a fhorbairt chun 
dramhaíl ghuaiseach a chosc agus a bhainistiú.

Múscailt Feasachta agus Athrú Iompraíochta
•  Feasacht chomhshaoil níos fearr a ghiniúint agus dul i bhfeidhm 

ar athrú iompraíochta dearfach trí thacú le gnóthais, le pobail 
agus le teaghlaigh a bheith níos éifeachtúla ar acmhainní.

•  Tástáil le haghaidh radóin a chur chun cinn i dtithe agus in ionaid 
oibre, agus gníomhartha leasúcháin a spreagadh nuair is gá.

Bainistíocht agus struchtúr na Gníomhaireachta um 
Chaomhnú Comhshaoil
Tá an ghníomhaíocht á bainistiú ag Bord lánaimseartha, ar a bhfuil 
Ard-Stiúrthóir agus cúigear Stiúrthóirí. Déantar an obair ar fud cúig 
cinn d’Oifigí:
• An Oifig um Inmharthanacht Comhshaoil
• An Oifig Forfheidhmithe i leith cúrsaí Comhshaoil
• An Oifig um Fianaise is Measúnú
• Oifig um Chosaint Radaíochta agus Monatóireachta Comhshaoil
• An Oifig Cumarsáide agus Seirbhísí Corparáideacha
Tá Coiste Comhairleach ag an nGníomhaireacht le cabhrú léi. Tá 
dáréag comhaltaí air agus tagann siad le chéile go rialta le plé a 
dhéanamh ar ábhair imní agus le comhairle a chur ar an mBord.
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Identifying pressures 
Ecosystem change can occur abruptly in a non-linear fashion until a tipping point is reached and 
the ecosystem shifts to an alternative state. After a regime shift, the ecosystem may not return to 
its previous state, even when an external pressure is removed or reduced. This makes it difficult to 
predict ecosystem responses to human impacts and to identify appropriate indicators and targets for 
ecosystem-based management. The tipping points project aimed to collate and integrate datasets 
describing the Celtic Sea ecosystem, to use these data to quantify how physical and biological 
ecosystem components have changed in recent decades and to establish relationships between 
ecosystem responses and external pressures.

Informing policy
Environmental legal instruments such as the Marine Strategy Framework Directive (MSFD) and the 
OSPAR Convention prioritise holistic ecosystem-based management approaches. The dynamic nature 
of marine ecosystems makes the determination of ecosystem status, the identification of appropriate 
indicators and the setting of targets particularly challenging. The analysis of long-term environmental 
and biological datasets can support the implementation of the MSFD and other ecosystem 
management approaches by providing a historical context for changes in indicators, allowing natural 
short-term variability to be separated from long-term trends, regime shifts to be detected and links 
between ecosystem components to be identified. The ultimate goal for researchers, managers and 
policymakers is to develop early warning indicators that signal an approaching threshold before it is 
reached, allowing management to respond to avert a regime shift.

Developing solutions
A primary objective of the project was to develop analytical tools for detecting step changes and to 
use these tools to determine if ecological tipping points have occurred in the Celtic Sea ecosystem. 
Significant progress was made in the early detection of ecosystem change points using the Bayesian 
online change-point detection algorithm. 

The results from the project show that there has been considerable change in the physical environment  
in the Celtic Sea, primarily associated with ocean warming. While a simultaneous regime shift across the 
ecosystem was not detected, there is strong evidence that change has occurred across multiple taxa 
and trophic levels in the Celtic Sea ecosystem over the last 50 years, which has important consequences 
for management.
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